

Instruction Manual SP590°/580°/570°/540° (Program Controller)

As a general-purpose temperature controllers, it supports PLC automatic connection, timer output and various output and products with the general control and position proportional control.

🕞 Copyright

Copyright© 2016 Samwon technology Co., Ltd This operation manual is a work protected by the copyright law. A part or entire of this manual shall not be copied, air sent, distributed, translated or changed into the form to be read by electronic media or machine without prior written consent of Samwon technology Co., Ltd.

Part I Instruction Manual

Safety Guide

Used simboll mark in this Instruction manual

It means the "Handle with care" or "Cautions"

In case of violation of this point, it may cause the death, severe injury or the extreme damage on the product.

- (1) Product : It is marked on the points to be acknowledged certainly to protect the human body and device.
- (2) Instruction manual : It describes the cautions to prevent the cases of endangered situation on the life and body of the user due to the electric shock and so on.

It means" Ground terminal"

Make the earth with the ground in case of product installation and controlling the product.

It means the "supplementary explanation" It describes the points to supplement the explanation.

It describes the "references" It describes the information and pages of reference to be referred.

Cautions in this Instruction manual

- Please deliver for the end user to possess always and keep it in the place accessible at any time.
- Use the product after full understanding of this installation manual.
- This installation manual does not warrant any other things because it is a description of the details for the function.
- A part or whole of this manual shall not be edited or copied randomly.
- The descriptions in this manual may be changed randomly without pre notice or warning.
- Even though this manual was made with elaboration, it will be appreciated if you inform to the purchasing point (Dealer shop and etc) or sales team in our company in case of deficiency, mistake or omission in the contents.

Safety Guide

Cautions for the safety and modification (Change) of the product

- Please use this product after full understanding on the safety cautions in this manual for the protection and safety for this product and the system connected to this system.
- Our company is not responsible to the damages occurred by using or handling or unattended using not relying on this installation manual.
- Please install at the outside of this product when the additional protection and safety circuit is installed Octarately for the protection and safety for this product and the system connected to this system.
- The internal modification (Change) and addition to this product are prohibited.
- Do not disassemble, repair and modify of this product because it becomes the reasons for electric shock, fire
 and malfunction.
- In case of changing the part or the consumables of this product, please contact to the sales department of our company.
- Do not contact to the moisture with this product. It may cause the failure on this product.
- Do not apply the strong impact on this product. It may cause the damage and failure on this product.

With regard to the exemption for the responsibility of this product

- We are not responsible for any warranty on this product besides the defined cases in the quality assurance condition of our company.
- We are not responsible for the direct or indirect damages on the user of any third party due to the not expectable defect or the natural disaster in use of this product.

With regard to the quality assurance condition of this product

- The warranty period shall be one year from the purchasing of this product. Free of charge repair is available only for the cases of out of order occurred from normal use conditions.
- The repair due to the out of order occurred after the warranty period shall be repaired at the actual cost according to the defined condition by our company.
- The out of order occurred within the warranty period shall be repaired at the actual cost for the following cases in spite of within the warranty period.
 - (1) Out of order due to the mistake or fault of the user (Ex: Initialization by losing the password and etc.)
 - (2) Out of order due to the natural disaster(Ex: Fire and flood and etc)
 - (3) Out of order due to the movement of product after installation.
 - (4) Out of order due to the random disassemble, change or damage on the product.
 - (5) Out of order due to the electric power instability.
 - (6) Others
- Please contact to the purchasing points or sales part of our company when after sales service is necessary because of the failure on the product.

Safety Guide

Environmental precautions for installation.

- Be sure to operate the controller installed on a panel to prevent electric shock.
- To install the controller, do select a location where;
 - (1) No one may accidentally touch terminal.
 - (2) Mechanical vibrations are minimal.
 - (3) No corrosive gas is prevent.
 - (4) Temperature fluctuation is minimal.
 - (5) Temperature can be maintained. (50 °C below / 10 °C over)
 - (7) No direct heat radiation is present.
 - (8) No magnetic disturbances are caused
 - (9) No water is splashed.
 - (10) No flammable materials are around.
 - (11) No wind blows. (prevent Dust with salt)
 - (12) No ultraviolet rays are present.

Precautions of Controller Mounting.

- Keep the input circuit wiring as far as possible away from power and ground circuit.
- Keep the controllers in 10°C ~ 50°C/ 20 % ~ 90 % RH, Warming up needed to use controller when temperature is below 10°C in advance.
- Do not mount front panel facing downward.
- To prevent electric shock, be sure to turn off and the source circuit breaker before wiring.
- The power consumptions are 100-240VAC, 50/60Hz, 10VAmax and operate without power switching in advance.
- No work in wet hands (it caused electric shock)
- Follow operation by precaution in the manual to avoid fire, electric shock, loss of life etc.
- Requested to follow mounting and operation methods just indicated in this manual.
- Refer the way of grounding connection, however, keep away for grounding to Gas pipe, water pipe, lightening rod etc.
- Be sure not to power connection before finishing of wiring between each contact point.
- Not close and wrapping the heat hole in back case of controller.

Rated Voltage and Power Consumption

- This product runs on 100-240VAC, 50/60Hz 10VA max.
- It runs on 24VDC, 4.1VA max when using DC Power.
- Risk of electric shock and fire if use power source in rating other than specified.

Engineering Units - EU, EUS

- EU and EUS are used for the scaling of the parameters of the controller.
- When the sensor type (IN-T) or the high limit.low limit of input range is changed, the parameters expressed in EU(), EUS() are changed inproportion to current data. (However, the high/low range setting data is initialized.)
- ☞ EU() : Value of engineering unit depending on the range of instrument
- ☞ EUS(): Value of engineering unit depending on the span of instrument

RL: Low limit of input range

RH: High limit of input range

* The Range of EU(), EUS()

	Range	Center point
EU(0 ~ 100%)	RL ~ RH	RH - RL /2 + RL
EU(-100 ~ 100%)	-(RH - RL + RL) ~ RH	RL
EUS(0 ~ 100%)	0 ~ RH - RL	RH - RL /2
EUS(-100 ~ 100%)	- RH - RL ~ RH - RL	0

* Ex) INPUT = TC.K2

RANGE = - 200.0°C(RL) ~ 1370.0°C(RH)

	Range	Center point
EU(0 ~ 100%)	- 200.0 ~ 1370.0°C	585.0°C
EU(-100 ~ 100%)	- 1770.0 ~ 1370.0°C	- 200.0°C
EUS(0 ~ 100%)	0∼1570.0℃	785.0℃
EUS(-100 ~ 100%)	- 1570.0 ~ 1570.0°C	ວ°0.0

Numbers · Character in 7-Segment

Numbers • Character in 7-Segment LED Display

0	1	2	3	4	5	6	7
8	8	8	B	8	S	8	8
8	9		-	/	Half -	Half 1	Half -1
8	8	8.	8	8	-/	-1	-/

Alphabets in 7-Segment

Alphabets in 7-Segment LED Display

A, a	B, b	C, c	D, d	E, e	F, f	G, g	H, h
8	8	8	8	8	8	8	8
l, i	J, j	K, k	L, I	M, m	N, n	О, о	P, p
B	8	8	B	8	8	8	8
Q, q	R, r	S, s	T, t	U, u	V, v	W, w	Х, х
8	8	8	8	B	8	8	B
Ү, у	Z, z						

Precautions

Numeric 5 and alphabet S appear the same way

I In	struction Manual	• 1
1.	Product Dimensions and Installation	10
	1.1. Dimension and Panel Cutout ······	10
	1.2. How to install Mount	14
	1.3. Power Cable Specification ·····	15
	1.4. Terminal Specification	15
	1.5. Dimension and Panel Cutout ······	16
	1.6. Power Cable Wiring ·····	20
	1.7. Analog Input Wiring 1.7.1. RTD Input 1.7.2. DC Voltage Input 1.7.3. DC Current Input	21 21 21 21
	1.8. Analog Output Wiring 1.8.1. Voltage Pulse Output(SSR)/Current Output(SCR) 1.8.2. Retransmission Output(RET)	22 22 22
	1.9. External Contact Input Wiring(DI)	23
	1.10. External Contact Output Wiring(RELAY)······	24
	1.11. Communication Wiring (RS485)	25
	1.12. HBA Wiring	25
2.	Control Keys and Display	26
3.	Flow of Operating Display	27
4.	Parameter Map	28
5.	Setting Up Parameter in each Group	32

5.1.	Program	Group(PTNO) ·····	32
	5.1.1. 1	Time Unit in Pattern Setting	32
	5.1.2. F	Run Starting Condition Setting	32
	5.1.3. \	Wait Function Range Setting	35
	5.1.4. \	Wait Function Time Setting	35
	5.1.5. F	Pattern End Operation Setting	37
	5.1.6. F	Run Starting SP Setting	37
	5.1.7. 1	Target Set Point in Segment Setting	38
	5.1.8. F	Running time of Segment Setting	38
	5.1.9. 1	Time Signal in Segment Setting	38
	5.1.10.F	Repeat Count of Segment Setting	39
	5.1.11.F	Repeat of End Segment Setting	39
	5.1.12.F	Repeat of Start Segment Setting ·····	39
5.2.	Auto Tur	ning Group(G.AT) ······	10
	5.2.1. A	Auto tuning ·····	10
	5.2.2. (GAIN Setting	10
5.3.	PID Grou	лр(G.PID)	43
	5.3.1. A	Anti Reset Wind-Up Setting	43
	5.3.2. (Control Mode Setting	45
	5.3.3. F	Fuzzy Function Setting	16
	5.3.4. F	PID Number Setting	17
	5.3.5. F	Proportional Band Setting	17
	5.3.6. I	Integration Time Setting	17
	5.3.7. [Derivation Time Setting	18
	5.3.8. 1	Manual Set Value of Integration Time Setting	18
	5.3.9. F	PID Zone Setting	18
	5.3.10.F	PID Hysteresis Setting	19
	5.3.11.[Deviation Value Setting	19
5.4.	Control F	Functions Group(G.CTL) ······	51
	5.4.1. F	Power Mode Setting	51
	5.4.2. F	Pattern End Signal Time Setting	51
	5.4.3. \	Valve Auto/Man Control Setting	52
	5.4.4. l	User Screen Setting	52
	5.4.5. ł	Key Lock Setting	52
	5.4.6. E	External Contact Input(DI) Setting	53
	5.4.7. (Output Status Display Setting	54
	5.4.8. F	PV Display High/Low Limit Setting	54
	5.4.9. F	Password Setting	55
	5.4.10.I	nitialization of The Controller	55

5.5.	Input Group(G.IN)	56
	5.5.1. Input Type Setting ·····	56
	5.5.2. Input Unit Setting ·····	56
	5.5.3. Input Range Setting ·····	58
	5.5.4. Decimal Point Setting	58
	5.5.5. PV Display Range Setting	59
	5.5.6. Input Filter Setting	59
	5.5.7. Display Filter Setting ·····	60
	5.5.8. PV Direction Setting during Sensor-Open	60
	5.5.9. Reference Junction Compensation Setting	60
	5.5.10. All Bias Setting	61
	5.5.11. Piece Bias Setting	61
5.6.	Control Output Group(G.OUT)	64
	5.6.1. Output Types Setting	64
	5.6.2. Output Direction Setting	66
	5.6.3. Output Cycle Setting	67
	5.6.4. Valve Control Mode Setting	67
	5.6.5. Valve Calibration(AUTO) Setting	68
	5.6.6. Valve High/Low Position Calibration(MAN) Setting	68
	5.6.7. Valve Traveling Time Setting	69
	5.6.8. Output High / Low Limit Setting	69
	5.6.9. Output Process Rate Setting ·····	70
	5.6.10. Hysteresis Setting	70
	5.6.11. Valve Bead Band Setting ·····	71
	5.6.12. Emergency Output Setting ······	72
	5.6.13. Output LED Setting	72
5.7.	Alarm Group(G.ALM) ·····	73
	5.7.1. Alarm Type Setting	73
	5.7.2. Alarm Point Setting	73
	5.7.3. High/Low Deviation Alarm Setting	74
	5.7.4. Hysteresis Setting	74
	5.7.5. Delay Time Seting ·····	75
	5.7.6. Alarm Mode Seting	75
5.8.	Inner Signal Group(G.IS)	78
	5.8.1. Type To be Referenced Setting	78
	5.8.2. Out or In Band Setting	78
	5.8.3. High/Low Limits of Band Setting	79
	5.8.4. Delay Time Setting	79

	5.9.	Timer Group(G,TMR)	82
		5.9.1. Timer Operation Setting	82
		5.9.2. Type of Timer Setting	82
		5.9.3. Timer Time Unit Setting	83
		5.9.4. Timer Time Setting	83
	5.10	. Heater Current Alarm Group(G.HBA)	85
		5.10.1. Heater Current Display Setting	85
		5.10.2. Heater Current Alarm Point Setting	85
		5.10.3. Heater Break Dead Band Setting	86
		5.10.4. Power Frequency Setting	86
		5.10.5. CT Sensor Step-Up Ratio Setting	87
		5.10.6. Bar Graph Setting ·····	87
		5.10.7. Heater Break Graph High/Low Setting	87
	5.11	. Loop Break Alarm Group(G.LBA)	88
		5.11.1. Loop Break Alarm Setting	88
		5.11.2. Loop Break Alarm Dead Band Setting	89
		5.11.3. Loop Break Alarm Time Setting	89
	5.12	. Retransmission Group(G.RET) ······	90
		5.12.1. Type of Retransmission Setting ·····	90
		5.12.2. High/Low Limits of Retransmission Setting	90
	5.13	. Communication Group(G.COM)	92
	5.14	. PLC Group(G.PLC)	94
	5.15	. Now PLC Display Group(G.NPL) ······	97
6.	Disc	blay Error and Correction	99
•			
πο		· · · · · ·	
ШC	omr	nunication Manual	101

1.1. Dimension and Panel Cutout

SP590@

1.2. How to install Mount

- 1) Cut the mounting panel. [Refer to 1.1. Dimension and Panel Cutout]
- 2) Insert the controller into the panel cutout with the rear terminal board facing ahead.
- 3) Attach the right and left mount and fix it to the panel. (Use driver)

Caution when fastening the mount

- Do not apply excessive force when fastening the mount on the account that the part may become damaged.
- Max torque when fastening the mount should not exceed 0.25N·m.

1.3. Power Cable Specification

Vinyl insulated wire 0.9~2.0m¹

1.4. Terminal Specification

Use M3 screw-compatible crimp-on terminals with insulating sleeve as shown below.

- First Turn off the source circuit breaker, check to ensure that the power cable is not conducting electricity using a tester, and then proceed with wiring in the manner.
 - Never touch the terminal in the rear panel to prevent electric shock when power is supplied to the controller.

- Be sure to turn off the electric power before wiring.
- Bind the wires connected to the controller terminals neatly together in order to prevent electromagnetic wave radiation.
- Recommended tightening torque : 0.4N·m ~ 0.55N·m

1.5. Dimension and Panel Cutout

1.6. Power Cable Wiring

- Use Vinyl insulation wire 0.9~2.0ml (Allowed Rating Voltage 300V max) or higher leveled cable for power cable connection.
- Use the main power disconnect device in case of abnormal situations occur.

- For power connection, make sure that N-phase and L-phase (+ and phases for DC Power) are connected.
- Turn off the power of NOVA500^e when wiring the terminal to prevent electrical shock.
- DC Power will operate at 24V DC, 4.1VA Max.

1.7. Analog Input Wiring

Be sure to connect to correct polarities, Connecting to a wrong polarity may cause unexpected malfunction.

- Use shielded wires and ground the shielding to an independent grounding point.
- Keep the input circuit wiring as far as possible away from the power and ground circuit.
- Use a wire having a low conductor resistance and no three-wire resistance differential.

1.7.1. RTD Input

1.7.2. DC Voltage Input

1.7.3. DC Current Input

1.8. Analog Output Wiring

 To prevent electric shock, be sure to turn off the NOVA500° Controller and the source circuit breaker before wiring.

- Be sure to connect to correct polarities. Connecting to a wrong polarity may cause serious trouble.
- Use shielded wires for the wiring and, Be sure to connect independently(1 point grounding)

1.8.1. Voltage Pulse Output(SSR)/Current Output(SCR)

SCR : 4~20mA DC, 500Ω max SSR : 12V DC, 600Ω min (AC Power) 24V DC, 600Ω min (DC Power)

To prevent electric shock, be sure to turn off the NOVA500° controller and the source circuit breaker before connection/disconnection of the actuator as well as wiring.

1.8.2. Retransmission Output(RET)

To prevent electric shock, be sure to turn off the NOVA500° controller and the source circuit breaker before connection/disconnection of the receiver as well as wiring.

1.9. External Contact Input Wiring(DI)

- Use a no-voltage contact such as relay contact.
- It has an ample switching capacity for the terminal's OFF voltage (approx. 5V) and On current (approx. 1mA)
- When using Open Collector(TR), use one with 2V or low voltage when the contact is ON and 100µA or less leakage current when it is OFF.

▲ RELAY Contact Connection

▲ TRANSISTOR Contact Connection

To protect electric shock, be sure to turn off the NOVA500° controller and the source circuit breaker before External Contact Input wiring.

1.10. External Contact Output Wiring(RELAY)

- When using an auxiliary relay or inductance load (L) such as solenoid, be sure to insert a CR filter(for AC) or diode (for DC) in parallel as a surge-suppressor circuit to reject sparks, preventing malfunction or damage. Recommended CR filters are as follows.
- Recommended CR FILTER
 - ► Seong Hoo Electronics : BSE104R120 25V (0.1µ+120Ω)
 - ► HANA PARTS CO. : HN2EAC
 - ► Songmi Eolectic co.,Ltd : CR UNIT 953, 955 etc
 - ► Jiwol Electric Co.,Ltd : SKV, SKVB etc
 - ▶ Shinyoug Communications Co.,Ltd : CR-CFS, CR-U etc

[▲] In case of AC Power

- In case resistance load exceeds specification, turn on/off the load using an auxiliary relay.
- Turn off the power of NOVA500° when wiring external contact output to prevent electrical shock.

- DIODE and CR filter connection Directly connect to inductance (L) load socket.
 Auxiliary relay connection Auxiliary relay coil rating must be below that of controller contact capacity.
 - (Relay contact capacity : 250VAC 1A / 30VDC 1A)

1.11. Communication Wiring (RS485)

- Up to 31 slave controllers(NOVA500^e) series instruments equipped with communication option can be multidrop-connected.
- Be sure to connect terminating resistors(220Q, 1/4W) to slave and master controllers at communicationchannel ends as shown above.

To prevent electric shock, be sure to turn off the NOVA500^e controlle and source circuit breaker before Communication wiring.

1.12. HBA Wiring

- Current ratio of the CT sensor, please use 800:1, 1000:1 product.
- The HBA is not detected when SCR control.

[Fig.1] HBA Connection

To prevent electric shock, be sure to turn off the NOVA500 $^{\circ}$ controlle and source circuit breaker before HBA wiring.

2. Control Keys and Display

No.	Contents	No.	Contents
1	PV display, Parameter Symbol		 Used in switching between parameters or registering parameter settings.
2	 MV Bar Graph display 90.1 ~ 100.0% : Lights on 10 80.1 ~ 90.0% : Lights on 9 : 10.1 ~ 20.0% : Lights on 2 0.1 ~ 10.0% : Lights on 1 0% : All Lights off OUT LAMP : When Proportional Control, Lights off 	6	 Used to change Display screen from RUN screen. Pressing the SET key for 3 sec from the RUN screen. → Move to the SET screen. Pressing the SET key for 3 sec from the SET screen. → Move to the RUN screen.
	When Proportional Control, Display the Valve B.GRP : When CUR, Heater current display	7	 Used when shifting position to modify value RST : Pressing when Pattern End (Pressing for 1 sec)
3	SP Set, Parameter Set		Used to change the value of parameters,
4	Lights on during EVENT	8	Pressing to operation Program 1 (Pressing for 1 sec)
6	Lights on during P1, P2, HOLD		Pressing to operation Program 2 (Pressing for 1 sec)

3. Flow of Operating Display

4. Parameter Map

: Option

*: When selecting OUT1, 2 HEAT, COOL.

P: Position proportional control.

5.1. Program Group(PTNO)

* PTNO = 0

5.1.1. Time Unit in Pattern Setting

Parameter for setting Time Unit in Program Pattern.

Symbol	Parameter	Setting range	Unit	Default	Display
TM.U	Time Unit	HH.MM, MM.SS	ABS	HH.MM	Always

5.1.2. Run Starting Condition Setting

- Parameter for setting SP starting condition when Program runs.
- STC (Start Code) is able to set SSP (SSP start) and PV (PV start).

Symbol	Parameter	Setting range	Unit	Default	Display
STC	Start Code	SSP, PV	ABS	PV	Always

STC Operation

% SSP START(STC = SSP)

It is running from initial SSP set by starting program run to TM1 (Segment Time) set by SP1 (Target SP) in Segment 1.

[Fig.2] SSP START

% PV START(STC = PV)

It is running from current PV in initial SP when program start to Target SP sets by next segment. Its running time is calculated and by referring the contents of setting program as of time passed to initial set point and runs.

For a soaking Segment, which uses the same target setpoint as preceding RAMP segment, it is running with a period of time for duration of the soaking segment.

PV in program starts run	Starting point of program
а	С
b	С
с	С
d	D
e	E(SSP)

Segment 2 is in first Soaking Range

Segment 3 is in first Soaking Range

PV in program starts run	Starting point of program
а	А
b	В
С	С
d	D
e	E(SSP)

In case No Soaking Range

PV in program starts run	Starting point of program
a	А
b	В
С	C
d	D
е	E(SSP)

In case that have only Ascending Segment

PV in program starts run	Starting point of program
2	Not yet start
a	program run
b	В
С	С
d	D
e	E(SSP)

5.1.3. Wait Function Range Setting

Parameter for setting the operating range to apply a wait function.

Symbol	Parameter	Setting range	Unit	Default	Display
W.ZON	Wait Zone	OFF, EUS([0.0% + 1digit] ~ 100.0%)	EUS	OFF	Always

5.1.4. Wait Function Time Setting

- Parameter for setting Wait Time during wait function.
- When it sets 'OFF', it doesn't work wait function.

Symbol	Parameter	Setting range	Unit	Default	Display
W.TM	Wait Time	OFF, 0.01 ~ 99.59	TM.U	OFF	Always

Wait Function

The wait function holds off the transition of segment until deviation is cleared up. The use of this function is enabled by defining a wait zone, which is a deviation range to determine the follow-up of PV data input, and a wait time, which is a period of waiting time until PV data enters the wait zone. When PV input enters the wait zone within the wait time, the operation shifts to the next. If not, the shift takes place as soon as the wait time is over.

[Fig.3] Wait Function - Wait Function Release within Waiting Time

[Fig.4] Wait Function - PV input data can't enter the wait zone

* PTNO = 1 or 2

 RUN Screen
 SET >
 Profile
 SET >
 PROG
 SET 3sec
 PINO = 1 or 2

 Group of Program parameters

5.1.5. Pattern End Operation Setting

Parameter for setting controller operation when program runs stop.
 (Refer to [Table1] Link code)

Symbol	Parameter	Setting range	Unit	Default	Display
#n.LC	Link Code	RST, HOLD, PTN1, PTN2	ABS	RST	Always

#n = 1~2

[Table1] Link code

Link code	Controller operation when program runs stop
RST	Shift to RESET(STOP)(Operation Hold)
HOLD	Runs to SP of Last Segment(When press the RESET Key)
PTN1	Runs PTN1 (Program Pattern-1) (Infinity Repeat when current Program is 'PTN1'.)
PTN2	Runs PTN2 (Program Pattern-2) (Infinity Repeat when current Program is 'PTN2'.)

5.1.6. Run Starting SP Setting

- Parameter for setting SP (Start Set Point) when Program pattern starts run.
- It runs for SSP form SP when STC is 'SSP'.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.SSP	Start SP	EU(0.0 ~ 100.0%)	EU	EU(0.0%)	Always

#n = 1~2

5.1.7. Target Set Point in Segment Setting

- Parameter for setting TSP(Target Set Point) in Segment .
- Maximum setting TSP is 15(1~F).

Symbol	Parameter	Setting range	Unit	Default	Display
#n.SP#m	Target SP	EU(0.0 ~ 100.0%)	EU	EU(0.0%)	Always

#n = 1~2, #m = 1~F

5.1.8. Running time of Segment Setting

- Parameter for setting running time of Segment
- It displays HH.MM or MM.SS by setting TMU parameter of Program Group.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.TM#m	Segment Time	OFF, 0.01 ~ 99.59	TM.U	OFF	Always

#n = 1~2, #m = 1~F

5.1.9. Time Signal in Segment Setting

1.251
oFF

- Parameter for setting whether using of TS(Time Signal) function in Segment.
- If TS sets 'ON' in the Segment, TS1 is 'ON' during the time period from Segment when running of the Segment

Symbol	Parameter	Setting range	Unit	Default	Display
#n.TS#m	Time Signal	OFF, ON	ABS	OFF	Always

#n = 1~2, #m = 1~F

5.1.10. Repeat Count of Segment Setting

Parameter for setting Number of Repeat Time of Segment when program runs.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.RPT	Segment Repeat	0(Endless loop) ~ 999	ABS	1	Always

#n = 1~2

5.1.11. Repeat of End Segment Setting

Parameter for setting last segment number in when repeat running segment.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.REN	Repeat End Segment	0, $1 \le \#n.RST \le \#n.REN \le F(15)$	ABS	0	Always

#n = 1~2

5.1.12. Repeat of Start Segment Setting

1r 5E	
8	

Parameter for setting start segment number in when repeat running segment.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.RST	Repeat Start Segment	0, $1 \leq \#n.RST \leq \#n.REN \leq F(15)$	ABS	0	Always

#n = 1~2

5.2. Auto Tuning Group(G.AT)

5.2.1. Auto tuning

- Parameter for setting AUTO TUNING carry on.
- When AT sets 'ON' AUTO TUNING carry on.

Symbol	Parameter	Setting range	Unit	Default	Display
AT	Auto Tuning	OFF, ON	ABS	OFF	PROG Operation

5.2.2. GAIN Setting

RF-P
<i>!.0</i>

- Parameter for settingting for proportional PID value by obtaining AUTO TUNING.
- Reduce AT-G, Cycle time became rapid and, Increase AT-G, control status became more stable.

If it is smaller, hunting become more and more.

Symbol	Parameter	Setting range	Unit	Default	Display
AT-G	AT Gain	0.1 ~ 10.0	ABS	1.0	Always

G.AT setting method

* Auto Tuning

The AUTO TUNING is

The AUTO TUNING is used to have the controller measure process characteristics and automatically set the most appropriate PID parameter. It makes ON/OFF control output to have Limit Cycle for control object and get the appropriate PID value calculated by steps and the responses.

Methods of AUTO TUNING

AUTO TUNING starts after TUNING Point for AUTO TUNING sets SP. The PID value sets automatically in PID zone positioned SP by setting up RP.

[[]Fig.5] Auto Tuning

Display during AUTO TUNING.

Main LED is blinking.

Change PID parameter during AUTO TUNING.

It can be changeable for PID value during AUTO TUNING however, it obtains by calculation automatically after AUTO TUNING. But, when compulsory ending of AUTO TUNING except normal operation, it is controlled by changed PID value.

- When abnormal Ending of AUTO TUNING.
 - 1) Compulsory Ending of AUTO TUNING.
 - 2 Input Sensor Open (S.OPN)during AUTO TUNING.
 - ③ Measuring Cycle of AUTO TUNING is exceeding 24hour.

* Starting Auto tuning and stopping it

- Starting
 - ① Check the control system, PV input and heater power.
 - ② Check RUN mode not in READY mode.
 - ③ Set the parameter AT = ON.
 - Stopping

Auto tuning stops automatically. But by setting AT=OFF or setting Ready mode, AT process will be interrupted. Changing to Ready mode or Manual mode will stop the AT process.

* Auto Tuning Gain(AT GAIN)

- A parameter to adjust the gain of MV with respect to PID. Generally, use the value obtained after auto tuning.
- To adjust the characteristics of control system, At Gain can be set manually.
 - ① If At Gain < 1.0, Response Is Fast, but PV hunting may occur..
 - ② If At Gain > 1.0, Overshoot decreases, Response becomes slow.

[Fig.6] Auto Tuning Gain(AT GAIN)

- AT can be done normally under controllable system condition (heater, sensor).
- AT can be started at RUN mode and when PV is in a normal range.

- At an abnormal situations, an Interruption of power or sensor burn-out during AT, AT will stop
 without changing PID parameters.
- The number of limit cycle or time can be different depending on the control system.
- MV will be ON and OFF for several times for limit cycle operation during AT procedure.
- In a special control system, optimal PID value cannot be obtained with AT. At this time, a user should adjust P, I, D value manually.

5.3.PID Group(G.PID)

FV SPSSO'	RUN Screen	SET 3sec	Prol	Dnce	Stup
	SET 🕨	<u>G.RE</u> •	· 🕪 🕨	G.PI d	
	SET	G.AT	Once	G.PID	
	Group of	f PID parame	eters.		

Provide the second seco

5.3.1. Anti Reset Wind-Up Setting

- Parameter for setting p-band to prevent overload.
- When controlled output is at maximum, integration is stopped to deter overshoot and switched over to ARW (anti-reset wind-up).
- If the setting is at AUTO, ARW will be operated automatically. ARW will operate at set value if adjusted other than AUTO.

Symbol	Parameter	Setting range	Unit	Default	Display
ARW	Anti-Reset Wind-Up Select	AUTO(0.0) ~ 200.0%	%	100.0%	Always

Anti reset wind-up (ARW)

- It is one of the methods for effective control in case of external disturbance.
- It is a function to inhibit the over shoot by anti reset wind-up when the control output reached to the maximum point.
- When I = 0, it is not operated in the PID setting data.
- * When there is no anti reset wind-up (ARW) function

[Fig.7] When there is no anti reset wind-up (ARW) function

The over shoot is big as the time to solve the anti reset wind-up accumulation gets longer even though the external disturbance is released and it takes time for now present value to be stabilized.

* When there is anti reset wind-up (ARW) function

	The over shoot is small as the time to solve the anti reset wind-up accumulation gets shorter by reversed calculation of the anti reset wind-up before entering of now present value (NPV) to $\pm P$ Band and now present value is stabilized soon.
Creation of	of external disturbance : The now present value (NPV) is decreased and control output data
	(MV) is increased at the moment of external disturbance creation.
Release o	f external disturbance : The control output value (MV) is 100% output by the accumulated
	anti reset wind-up at the moment of release of external disturbance.
Solving the	anti reset wind-up accumulation : Control output value (MV) is decreased by solving the anti
	reset wind-up accumulation

5.3.2. Control Mode Setting

Parameter for setting operation mode to D.DV or D.PV under PID control.

Symbol	Parameter	Setting range	Unit	Default	Display
C.MOD	Control Mode	D.PV, D.DV	ABS	D.PV	Always

Control Mode

D.DV mode

- In D.DV mode, MV changes slowly. Overshoot is small but the delay may appear to reach SP.
- It is suitable for a system which shows sensitive response to MV.

[Fig.9] D.DV mode

D.PV mode

- In D.PV mode, MV changes quickly. Overshoot may occur but the time to reach the TSP is shorter.
- It is suitable for a system which shows slow response to MV.

[Fig.10] D.PV mode

5.3.3. Fuzzy Function Setting

FUEY
oFF

- Parameter for setting fuzzy function under controller control.
- Fuzzy function may deter overshoots when PV reaches SP or moderate load variance. (Refer to [Fig.11] Deterrence of Overshoot by Fuzzy Function)

Symbol	Parameter	Setting range	Unit	Default	Display
FUZY	FUZZY	OFF, ON	ABS	OFF	Always

[Fig.11] Deterrence of Overshoot by Fuzzy Function

Fuzzy Operation

- When the variation of load power is great, or SP is changed frequently, overshooting appears generally. The Fuzzy function is effective to suppress the overshooting.
- Internal working sequence of Fuzzy function

① When PV approaches SP, The calculation of Super SP is carried out. ② Assuming this Super SP as SP, MV is estimated.

Overshooting is suppressed by Fuzzy function.

5.3.4. PID Number Setting

Parameter for selecting one of four PID group numbers.

Symbol	Parameter	Setting range	Unit	Default	Display
PID	PID Number	MENU, 1 ~ 4	ABS	MENU	Always

5.3.5. Proportional Band Setting

Parameter for setting proportional band operation for PID control.

Symbol Parameter		Setting range	Unit	Default	Display
#n.P	Proportional Band	0.1 ~ 1000.0%	%	10.0	Always

#n = 1~4

5.3.6. Integration Time Setting

Parameter for setting integration time for PID control.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.l	Integral Time	OFF, 1 ~ 6000 sec	ABS	120 sec	Always

#n = 1~4

5.3.7. Derivation Time Setting

Parameter for setting derivative time for PID control.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.D	Derivative Time	OFF, 1 ~ 6000 sec	ABS	30 sec	Always

#n = 1~4

5.3.8. Manual Set Value of Integration Time Setting

- Parameter for applying manually set value to PID calculation integration time, provided that integration time (I) is off.
- Set values in 1.MR(Manual Reset) will be apply for settings other than off.

Symbol	Parameter	er Setting range		Default	Display
#n.MR	Manual Reset	-5.0 ~ 105.0%	%	50.0%	I = 0

#n = 1~4

5.3.9. PID Zone Setting

lr P
33.3
<u>2 P</u>

- Parameter for setting the 3 PID zones in controller.
- PID is applied by RP setting.
 PID1 : IN.RL (IN.SL if input mV, V sensor) ~ 1.RP
 PID2 : 1.RP~2.RP
 PID3 : 3.RP~IN.RH(IN.SH if input mV, V sensor)

Symbol	Parameter	Setting range	Unit	Default	Display
1.RP	Reference Point1	$EU(0.0\%) \le 1.RP \le 2.RP$	EU	EU(33.3)	PID = 1
2.RP	Reference Point2	$1.RP \le 2.RP \le EU(100.0\%)$	EU	EU(66.7%)	PID = 2

5.3.10. PID Hysteresis Setting

Parameter for setting Hysteresis when select a PID group in sectional PID.

Symbol	Parameter	Setting range	Unit	Default	Display
RP.HY	Reference Hysteresis	EUS(0.0 ~ 10.0%)	EUS	EUS(0.3%)	PID = 3

5.3.11. Deviation Value Setting

Parameter for setting deviation if using deviation PID.

Symbol	Parameter	Setting range	Unit	Default	Display
RDV	Reference Deviation	EUS(0.0 ~ 100.0%)	EUS	EUS(0.0%)	PID = 4

PID Group

PID Zone is determined by NPV. When PV oscillates around the zone boundaries 1.RP, 2.RP, PID set changes correspondingly. To prevent frequent change of PID set, the RP.HY can be set.

Deviation PID (4.PID) may be used by setting RDV value. When [PV-SP] >RDV, 4.PID set is applied.

5.4. Control Functions Group(G.CTL)

<u><u> </u></u>	RUN Screen	SET 3sec	Prog	Conce	SEU STUP	₽ ►
	SET 🕨 🕻	5 <u>.8</u> 2)	• (<u>v</u> pi) • (Pud	▶ (SET) ▶	<u> 6.5 E L</u>
	SET	G.AT	Twice	Password	SET	G.CTL
	Paramete	er for setting	g control par	rameters.		

5.4.1. Power Mode Setting

Parameter for setting ON/OFF mode.

STOP: Stops when power is on.

COLD: Stops when power is on.

HOT : Maintains power off status. (Starting from the last running SEG)

Symbol	Parameter	Setting range	Unit	Default	Display
PWR.M	Power Mode	STOP, COLD, HOT	ABS	COLD	Always

5.4.2. Pattern End Signal Time Setting

 Parameter for setting Output during the setting time when sets in Pattern End. it makes a output when PEND sets in G.OUT

Symbol	Parameter	Setting range	Unit	Default	Display
PE.TM	Pattern End Time	CONT., 1~9999 sec	TIME	15 sec	Always

5.4.3. Valve Auto/Man Control Setting

$BR - \bar{n}$
RULo

- Parameter for setting for position proportional control, the valve output status is set to automatically(AUTO) or manual(MAN).
- When the V.A/M is set to Manual(MAN), the 'MAN' indicator on the front display will light. The EV1(Open)/EV2(Close) relay will also operate during the operation of the Up/Down key.

Symbol	Parameter	Setting range	Unit	Default	Display
V.A/M	Valve Auto/ Man Control	AUTO, MAN	ABS	AUTO	Position proportional control

5.4.4. User Screen Setting

- Parameter for setting user screen to display most frequently used parameters on screen.
- Refer to Communication Manual D-Register to input.

Symbol	Parameter	Setting range	Unit	Default	Display
US1	User Screen1	OFF, D-Register No.(0001 ~ 1299)	ABS	OFF	Always
US2	User Screen2	OFF, D-Register No.(0001 ~ 1299)	ABS	OFF	Always

5.4.5. Key Lock Setting

Parameter to counteract irregular operations due to erroneous input keys.

If LOCK is ON, all parameter settings become restricted including SP.

Symbol	Parameter	Setting range	Unit	Default	Display
LOCK	Key Lock	OFF, ON	ABS	OFF	Always

5.4.6. External Contact Input(DI) Setting

 Parameter for setting operation status of controller by External Contact Input (DI) Option.

(Refer to [Table2] DI Operation for controller operation under DI.SL setting.)

Symbol	Parameter	Setting range	Unit	Default	Display
DI.SL	DI Selection	OFF, 1, 2, 3	ABS	OFF	DI Option

[Table2] DI Operation

DI.SL	DI1	DI2	Operation
OFF	-	-	NOT USE
	OFF	-	HOLD OFF
1	ON	-	HOLD ON
	-	OFF	STEP OFF
	-	ON	STEP ON
	OFF	-	RESET
2	ON	-	PROG RUN
2	-	OFF	PROG1
	-	ON	PROG2
	ON	-	RUN (Timer Trigger)
5	-	ON	RUN (Timer Trigger)

Timer Trigger

- Pertinent timer is started if DI1 and 2 begin to run.
- For more details, refer to 5.9. Timer Group(G.TMR).

5.4.7. Output Status Display Setting

o.5£5
oFF

- Parameter for displaying current output setting (OUT1/2, EV1/2/3/4) of controller.
- You can check current output setting by turning on O.STS.

Symbol	Parameter	Setting range	Unit	Default	Display
O.STS	Output Status	OFF, ON	ABS	OFF	Always

5.4.8. PV Display High/Low Limit Setting

Parameter for setting high/low limits of sensor input values on PV screen.

 Only values on and within DSP.H / DSP.L will be displayed on PV screen, although exceeding values are input from the sensor.

However, the controller will operate according to the actual sensor values.

dSP.L	
- 5.6	7

Symbol	Parameter	Setting range	Unit	Default	Display
DSP.H	Display High Limit	EU(-5.0 ~ 105.0%)	EU	EU(105.0%)	Always
DSP.L	Display Low Limit	(DSP.L < DSP.H)	EU	EU(-5.0%)	Always

5.4.9. Password Setting

UPYd
D

- Parameter for setting controller password.
- Once U.PWD is set, password must be entered to access Control Group (G.CTL). If you set a password and input values do not match, you can not enter the parameters of the group in the future.
- Default U.PWD password is '0'.

Symbol	Parameter	Setting range	Unit	Default	Display
U.PWD	User Password	0 ~ 9999	ABS	0	Always

Do not forget your password.

5.4.10. Initialization of The Controller

1	nl	Ł
	٥ł	F

- Parameter for initiating controller.
- All controller parameters are initialized by switching INIT to ON. (However, communication are not initialized.)

Symbol	Parameter	Setting range	Unit	Default	Display
INIT	Parameter Initialization	OFF, ON	ABS	OFF	Always

Switching INIT to ON will initialize all controller parameters to default settings. Please be careful.

5.5. Input Group(G.IN)

RUN Screen	SET 3sec	Proc	Dnce	► <u>SLUP</u>	SET SET	•
GAT	Twice	Password	SET >	<u>Б.Е.Е.</u> G.CTL	► (V/PI) ► Once	G.N
Group of i	nput par pe (IN-T) :	ameters. Thermocouple ((TC), Resistiv	e thermal detect	or (RTD), DC	volt (DCV).

In case of IC of KTD, the sensor type and temperature range should be select
 In case of DCV, the input types are classified with the range of input voltage.

Input Group parameter settings must be adjusted first as they can influence initialization of other group parameters.

5.5.1. Input Type Setting

Parameter for setting sensor input types.

Refer to [Table3] Sensor input types to adjust settings.

Symbol	Parameter	Setting range	Unit	Default	Display
IN-T	Input Sensor Type	For more detail, refer to [Table3] Sensor input types	ABS	TC.K1	Always

5.5.2. Input Unit Setting

- Select "C" or "F" for input unit.
- Changing IN-U will automatically convert temperature ranges in appropriate unit.
- IN-U is only applicable when sensor type (IN-T) is TC or RTD.
- Refer to [Table3] Sensor input types to check temperature settings.

Symbol	Parameter	Setting range	Unit	Default	Display
IN-U	Input Unit	°C / °F	ABS	Ĵ	IN-T = TC or RTD

Once sensor type is changed, all parameters are initialized, except for communication. Please be careful.

[Table3]	Sensor	input	types

* Display range : -5% ~ + 105%

Group	Symbol	Temp.Range(℃)	Temp.Range(°F)	Measurement Range
	TC.K1	-200 ~ 1370	-300 ~ 2500	
	TC.K2	-200.0 ~ 1370.0	-300 .0~ 1900.0	Range $\pm 0.1\% \pm 1$ digit for temperature
	TC,J	-200.0 ~ 1200.0	-300 .0~ 1900.0	greater than 0°C Range +0.2%+1 digit for temperature
	TC.E	-200.0 ~ 1000.0	-300.0 ~ 1800.0	less than 0°C
	TC.T	-200.0 ~ 400.0	-300 .0~ 750.0	
	TC.R	0.0 ~ 1700.0	32 ~ 3100	Temperature range ±0.15%±1 digit
	TC,B	0.0 ~ 1800.0	32 ~ 3300	Range ±0.15%±1 digit for temperature greater than 400°C Range ±5%±1 digit for temperature less than 400°C
	TC,S	0.0 ~ 1700.0	32 ~ 3100	Temperature range ±0.15%±1 digit
T/C	TC.L	-200.0 ~ 900.0	-300 ~ 1600	Range ±0.1%±1 digit for temperature greater than 0°C Range ±0.2%±1 digit for temperature less than 0°C
	TC.N	-200.0 ~ 1300.0	-300 ~ 2400	Range ±0.1%±1 digit for temperature greater than 0°C Range ±0.25%±1 digit for temperature less than 0°C
	TC.U	-200.0 ~ 400.0	-300 .0~ 750.0	Range ±0.1%±1 digit for temperature greater than 0°C Range ±0.2%±1 digit for temperature less than 0°C
	TC.W	0~2300	32 ~ 4200	Temperature range ±0.2%±1 digit
	TC.PL	0.0 ~ 1390.0	32 ~ 2500	Temperature range ±0.1% ±1digit
	TC.C	0~2320	32 ~ 4200	Temperature range ±0.2% ±1digit
	PTA	-200.0 ~ 850.0	-300.0 ~ 1560.0	Temperature range +0.1% +1 digit
	PTB	-200.0 ~ 500.0	-300.0 ~ 1000.0	
RTD	PTC	-50.00 ~ 150.00	-148.0 ~ 300.0	Inquire separately
1.1.5	PTD	-200 ~ 850	-300 ~ 1560	Temperature range ±0.1% ±1digit
	JPTA	-200.0 ~ 500.0	-300.0 ~ 1000.0	Temperature range ±0.1% ±1digit
	JPTB	-50.00 ~ 150.00	-148.0 ~ 300.0	Inquire separately
	2V	0.400 ~ 2.000V(-10000 ~ 19999)	
	5V	1.000 ~ 5.000V(·	-10000 ~ 19999)	
DCV	10V	0.00 ~ 10.00V(-	10000 ~ 19999)	Temperature range ±0.1% ±1digit
	20MV	-10.00 ~ 20.00mV	(-10000 ~ 19999)	
	100MV	0.0 ~ 100.0mV(-	10000 ~ 19999)	

☞ Performance at standard operating status at 23±2℃, 55±10% RH, and 50/60Hz

When receiving 4~20mA DC signal, select DCV 5V (1~5V DC) and connect 250Ω resistance.

5.5.3. Input Range Setting

	1	nr H
		1370
_)
	1	nrL

Parameter for setting high/low limits for sensor input.
 TC, RTD Input
 Once sensor type is selected, input range for TC and RTD will be determined according to [Table3] Sensor input types.
 Input ranges for IN.RH and IN.RL can be changed within given range.
 Decimal placement cannot be changed.

DCV, mV Input

Determining input range after selecting a sensor type is the same for voltage input. Input ranges for IN.RH and IN.RL can be changed within given range.

Symbol	Parameter	Setting range	Unit	Default	Display
IN.RH	Input Range High	Refer to [Table3] Sensor input types within Input type. (IN.RH > IN.RL)	EU	EU(100%)	Always
IN.RL	Input Range Low		EU	EU(0.0%)	Always

Input Range Setting Example

When using a range of [Table3] Sensor input types to select the thermocouple input range of -200 ~ 1370 °C hayeoteul in, setting "500" to "-100", Low Range High Range setting items on the setting items, -100 ~ 500 °C this is limited.

5.5.4. Decimal Point Setting

Parameter for setting decimal placement, if sensor input type is mV or V.

Symbol	Parameter	Setting range	Unit	Default	Display
IN.DP	Input Dot Position	0~3	ABS	1	IN-T = DCV

Changing this parameter will change decimal placement for all parameters pertinent to PV, including those relevant to EU and EUS.

5.5.5. PV Display Range Setting

- Parameter for setting high limit for scale, if sensor input type is mV or V.
- Parameter for setting low limit for scale, if sensor input type is mV or V.

Symbol	DI Parameter Setting range		Unit	Default	Display
IN.SH	Input Scale High	- 10000~19999, but INSH > INSL Decimal place will conform to IN.DP	ADC	100.0	IN-T = DCV
IN.SL	Input Scale Low		ABS	0.0	IN-T = DCV

PV Display Range Setting Example

- Select the input voltage(V, mV) to the input type, and the range is 1~5V and scaled display need to be 0~100 IN-T: 5V.
- IN.SH: 100(5V input is scaled to "100" display).
- IN.SL: 0(1V input is scaled to "0" display).

5.5.6. Input Filter Setting

Parameter for setting PV filter to moderate PV run-outs due to disturbance and noise.

Symbol	Parameter	Setting range	Unit	Default	Display
IN.FL	Input Sensor Filter	OFF, 1~120	ABS	OFF	Always

5.5.7. Display Filter Setting

 Parameter for moderating PV run-outs due to delicate sensor reaction under normal operation.

Symbol	Parameter	Setting range	Unit	Default	Display
D.FL	Display Filter	OFF, 1~120	ABS	OFF	Always

5.5.8. PV Direction Setting during Sensor-Open

- Parameter for setting sensor direction during sensor-open.
- If B.SL value is UP, PV will operate upwards of sensor input. If B.SL value is DOWN, PV will operate downwards of sensor input.
- B.SL default setting is UP. (However, when input mV and V, it will be initialized to OFF. 10V, 20mV and 100mV will not be S.OPN checked.)

Symbol	Parameter	Setting range	Unit	Default	Display
B.SL	Bum Out Select (Note1)	OFF, UP, DOWN	ABS	UP (DCV=OFF)	Always

* (Note1) : S.OPN(Sensor-Open) = B.OUT(Burn-Out)

5.5.9. Reference Junction Compensation Setting

 Parameter for setting use of RJC (Reference Junction Compensation), in case the sensor input type is TC (thermocouple).

Symbol	Parameter	Setting range	Unit	Default	Display
R.SL	RJC Select	ON, OFF	ABS	ON	T/C

5.5.10. All Bias Setting

- Adjusts offsets of all bias values for PV display.
- PV display value = input value + all bias (AL.BS).

Symbol	Parameter	Setting range	Unit	Default	Display
AL.BS	All Bias Value	EUS(-100.0 ~ 100.0%)	EUS	EUS(0.0%)	Always

5.5.11. Piece Bias Setting

65.P	1
ור בו]

- Parameter for setting piece bias to set BIAS to PV value.
- Up to 4 references can be set for bias.
 - Reference $1 : IN.RL(IN.SL) \leftrightarrow BS.P1$
 - Reference 2 : BS.P1 \leftrightarrow BS.P2
 - Reference 3 : BS.P2 \leftrightarrow BS.P3
 - Reference 4 : BS.P3 \leftrightarrow IN.RH(IN.SH)
- For more details, refer to [Fig.14] Example of Piece Bias and [Fig.15] Example of Piece Bias Formula .

Symbol	Parameter	Setting range	Unit	Default	Display
BS.P#n	Reference Bias Point	$EU(0.0 \sim 100.0\%) \\ IN.RL \le BS.P1 \le BS.P2 \le BS.P3 \le IN.RH$	EU	EU(100.0%)	Always

#n = 1~3

650 ·
8

- Parameter for setting the PV value correction value(BIAS) to be applied to domestic correction.
- For more details, refer to [Fig.14] Example of Piece Bias and [Fig.15] Example of Piece Bias Formula.

Symbol	Parameter	Setting range	Unit	Default	Display
BS#n	Bias Value for BS.P Point	EUS(-100.0~100.0%)	EUS	0	Always

#n = 0~4

[Fig.14] Example of Piece Bias

There are +2°C in 25°C, -1°C in 50°C, +3°C in 75°C as temperature deviation in measuring actual temperature in range from 0°C ~100°C, and try to take a Piece Bias, each Bias set value are shown as belows.

RL = 0°C, BSP1=25°C, BSP2=50°C, BSP3=75°C, RH=100°C BS0 = 0°C, BS1=-2°C, BS2=+1°C, BS3=-3°C, BS4=0°C

- Temperature Bias Value = Temperature after Bias Actual Temperature
- Temperature in 600°C(P) after Bias

$$P = 600 + (600 - BPS2) X - BS2 - BS2 + BS2 - BSP3 - BSP2 + BS2$$

Processing PV Input

- If PV is less than EU(-5%) or greater than EU(- 105%), PV will be -OVR or OVR.
- For internal operation, PV will be set -5%, 105%.
 - PV > EU(105%) : PV = 105%, PV = OVR
 - $EU(-5\%) \le PV \le EU(105\%) : PV = PV$
 - PV \leq EU(-5%) : PV = -5%, PV = -OVR
- All parameters are reset to change the sensor types. (However, communication and A/M are not initialized.)
- If you change the input type and input range, so the parameters, that is unit related to the input range is changed according to the EU or EUS parameters are input range should be set ahead of the sensor type parameter with units of the EU or EUS.

Setting Example

- Pt100 $\!\Omega$ sensor is used in the range of -50.0~500.0 $\!^\circ C$ and display 1 decimal place.
- IN-T = PTA \rightarrow PTA (-200.0~850.0 $^\circ C$ range) uses a pressure sensor.
- IN-U = $^{\circ}C \rightarrow \text{Display unit is }^{\circ}C$.
- IN.RH = 500.0
- IN.RL = -50.0

5.6. Control Output Group(G.OUT)

Group of output parameters.

- Output type will be selected according to parameter setting of OUT1, OUT2, EV1, EV2, EV3 and EV4 of G.OUT.
- Output methods OUT1 and OUT2 support SSR/SCR, and EV1, EV2, EV3 and EV4 are a relay.

[Table4] Output Type

OUTPUT	SSR/	/SCR		Re	lay	
001-01	OUT1	OUT2	EV1	EV2	EV3	EV4
Control Output	0	0	0	0	0	0
Position Proportional Control Open			0			
Position Proportional Control Close				0		
Alarm Signal 1, 2, 3 and 4			0	0	0	0
RUN Signal			0	0	0	0
Inner Signal 1 and 2			0	0	0	0
LBA, TMR1 and 2			0	0	0	0
Time Signal			0	0	0	0
Loop Break Signal			0	0	0	0
Timer Signal 1, 2			0	0	0	0
Pattern End Signal			0	0	0	0
Up Signal			0	0	0	0
Down Signal			0	0	0	0
Keeping Signal			0	0	0	0
Transmission Output	0	0				

5.6.1. Output Types Setting

Parameter for setting operation of OUT1.

Parameter for setting operation of OUT2.

Symbol	Parameter	Setting range	Unit	Default	Display
OUT1	Analog Output 1	HEAT, RET	ABS	HEAT	Always
OUT2	Analog Output 2	HEAT, RET	ABS	RET	Always

Parameter for setting output types, when OUT1 or OUT2 is set at HEAT.

Symbol	Parameter	Setting range	Unit	Default	Display
HEAT	Heat Output Type	SSR, SCR	ABS	SSR	OUT1, OUT2 = HEAT

Parameter for setting Event Output EV1~4 (Relay output).

EV3 and 4 parameters are displayed as 'Option'.

Symbol	Parameter	Setting range	Unit	Default	Display
EV1	Event Output 1 (Note1)	HEAT, ALM1, ALM2,	ABS	ALM1	Always
EV2	Event Output 2 (Note2) ALM3, ALM4, RUN, IS1, IS2, LBA, TMR1,	ABS	ALM2	Always	
EV3	Event Output 3	TMR2, TS, P.END,	ABS	ALM3	Option
EV4	Event Output 4 UP, DOWN, SOAK	ABS	ALM4	Option	

* (Note 1) : The position proportional control, EV1 OPEN output is fixed.

* (Note 2) : When position proportional control, EV2 CLOSE output is fixed.

Example of Output Setting

■ Control Output (OUT1 → SSR), Transmission Output (OUT2 → RET), Relay Output (EV1 → ALM1, EV2 → ALM2, EV3 → ALM3, EV4 → ALM4)

[Fig.16] Example of Output Setting

5.6.2. Output Direction Setting

o.Ri	o.REE			
ſ	EB			

- Parameter for setting normal / reverse direction of control output.
- If O.ACT is set REV and PV is less than SP, control output is increased and vice versa if O.ACT is set FWD.

Symbol	Parameter	Setting range	Unit	Default	Display
0.ACT	Output Direction Actuator	REV, FWD	ABS	REV	Always

Forward and Reverse Control Action

[Fig.17] Forward and Reverse Control Action

5.6.3. Output Cycle Setting

Parameter for setting time for one ON/OFF cycle, if control output is set proportional to PID control time (i.e. OUT1 or 2 = HEAT (SSR), EV1~4 = HEAT).

Symbol	Parameter	Setting range	Unit	Default	Display
CT	Heat Cycle Time	1 ~ 300 sec	ABS	2 sec	Always

Cycle Time

- Cycle time is valid only when output type is SSR (Solid State Relay) or RELAY.
- Cycle time is 1 period of ON + OFF time.

[Fig.18] In case the cycle time is 10 sec (CT = 10)

5.6.4. Valve Control Mode Setting

- Parameter for setting the valve control mode during position proportional control.
- FB.C : Receive feedback input (resistance) to display valve position and control.
- FB.VC : Receive feedback input (resistance) to display the valve position and control, when the feedback input disconnection to the virtual control mode. When converted to the virtual control mode, the decimal point '.' In the operating screen V.*** will flash.

		VRT.	C : N	lo i	feedback	input to	virtual	control	valve	position	determination	۱.
--	--	------	-------	------	----------	----------	---------	---------	-------	----------	---------------	----

Symbol	Parameter	Setting range	Unit	Default	Display
V.CMD	Valve Control Mode	FB.C (Feed back control), FB.VC (Feed back & Virtual control) VRT.C (Virtual control)	ABS	FB.C	Position proportional control, Input feedback

5.6.5. Valve Calibration(AUTO) Setting

HERL
oFF

- Parameter for setting the valve upper/ lower limit position to automatically adjust during position proportional control.
- When automatic adjustment is performed, adjustment is started after V.CAL is displayed on the operation screen.
- At the beginning of the auto-tuning, if there is no change in the feedback input, V.CER is displayed and the adjustment is ended.

When V.CER is displayed, the valve output is not executed.

Symbol	Parameter	Setting range	Unit	Default	Display
V.CAL	Valve Auto Calibration	OFF, ON	ABS	OFF	When FB.C or FB.VC is selected

5.6.6. Valve High/Low Position Calibration(MAN) Setting

<u> </u>	 Parameter for setting the valve lower limit position to manually adjust during position proportional control. The EV1(Open) and EV2(Close) relays will operate during pressing the Up / Down key. Press the SET key to store the current value of the lower limit position.
	 Parameter for setting the valve upper limit position to manually adjust during position proportional control. The EV1 (Open) and EV2 (Close) relays will operate during pressing the Up / Down key. Press the SET key to store the current value of the upper limit position.
	bown key, mess the sen key to store the current value of the upper limit position

Symbol	Parameter	Setting range	Unit	Default	Display
V.LOW	Valve Low Position Calibration	V.VP Display : -5.0 ~ 105.0% ABS Valu		Current Value	During FB.C or FB.VC,
V.HI	Valve High Position Calibration	V.VP Display : -5.0 ~ 105.0%	ABS	ABS Current Value	during operation

[Fig.19] Position proportional valve output operation

5.6.7. Valve Traveling Time Setting

Parameter for setting valve traveling time.

Symbol	Parameter	Setting range	Unit	Default	Display
V.TT	Valve Traveling Time	1 ~ 999 sec	ABS	60 sec	Position proportional control

5.6.8. Output High / Low Limit Setting

Parameter for setting high output limit.

- Parameter for setting low output limit.
- Control output is restricted to high/low limit values.

Symbol	Parameter	Setting range	Unit	Default	Display
ОН	Output High Limit	(OL + 1Digit) ~ 105.0%	%	100.0%	Always
OL	Output Low Limit	-5.0% ~ (OH - 1Digit)	%	0.0%	Always
5.6.9. Output Process Rate Setting

Parameter for setting output process rate, in second.

Symbol	Parameter	Setting range	Unit	Default	Display
OPR	Output Process Rate	OFF, 0.1 ~ 100.0%/sec	ABS	OFF	Always

5.6.10. Hysteresis Setting

 Parameter for setting Hysteresis, if control output is valve output in Position Proportional Control.

Symbol	Parameter	Setting range	Unit	Default	Display
V.HYS	Valve Hysteresis	0.0 ~ 100.0%	%	0.5%	Position proportional control

[Fig.20] V.DB and V.HYS Operation

5.6.11. Valve Bead Band Setting

<i><u><u></u></u></i> <u></u>
<u> </u>
8.945

- Parameter for setting valve dead band in Position Proportional Control.
- Parameter for setting PV dead band in Position Proportional Control.
- Parameter for setting Hysteresis of PV dead band in Position Proportional Control.

Symbol	Parameter	Setting range	Unit	Default	Display
V.DB	Valve Dead Band	0.1 ~ 100.0%	%	3.0%	Position proportional control
V.PDB	Valve PV Dead Band	EUS(0.0~100.0%)	EUS	EUS(0.0%)	Position proportional control
V.PHS	Valve PV Hysteresis	EUS(0.0 ~ 10.0%)	EUS	EUS(0.5%)	Position proportional control

[Fig.21] V.PDB (Valve PV Dead Band)

5.6.12. Emergency Output Setting

- Parameter for setting emergency output values.
- When stopped due to A/D error or sensor-open while in AUTO mode, the system discontinues output from PID calculation and begins to output valves set in Po.

Symbol	Parameter	Setting range	Unit	Default	Display
PO	Preset Output	-5.0 ~ 105.0%	%	0.0%	Always

5.6.13. Output LED Setting

- Parameter for setting Output LED (MV OUT Lamp).
- SSR : MV lamp is turned off according to CT during SSR or relay control output.
- SCR : MV lamp is turned off irrelevant to CT during SCR control output.

Symbol	Parameter	Setting range	Unit	Default	Display
O.LED	Output LED	SSR, SCR	ABS	SSR	Always

5.7. Alarm Group(G.ALM)

<u><u><u></u></u></u>	RUN Screen	SET 3sec	Prof	Once	► <u>SEU</u> F stup	► SET	
	GAT	Twice	Password	SET D	<u>6.</u> G.CTL	Three times	G.ALM
	Group of	alarm par Direction n	ameters				

- Forward : ON when alarm condition, OFF when alarm off
- Reverse : OFF when alarm condition, ON when alarm off
- The condition of Standby
 - Power On
 - Changing of Alarm Type
 - Changing SP

5.7.1. Alarm Type Setting

- Parameter for setting Alarm type.
- Refer to [Table4] Type of Alarm to see alarm types.

Symbol	Parameter	Setting range	Unit	Default	Display
ALT#n	Alarm Type	Refer to [Table4] Type of Alarm	ABS	AH.F	Always

#n = 1~4

5.7.2. Alarm Point Setting

 Parameter for setting alarm point with respect to alarm types set in ALT#n (presents during high/low limit operations).

Symbol	Parameter	Setting range	Unit	Default	Display
AL-#n	Alarm Set Value	EU(-100.0 ~ 100.0%)	EU	EU(100.0%)	Others deviation alarm

5.7.3. High/Low Deviation Alarm Setting

- Illustrates high alarm point within deviation bounds during high limit deviation operation.
- Illustrates high alarm point within deviation bounds during low limit deviation operation.

Symbol	Parameter	Setting range	Unit	Default	Display
AL#n.H	Alarm Set High Deviation	EUS(-100.0 ~ 100.0%)	EUS	EUS(0.0%)	Deviation alarm
AL#n.L	Alarm Set Low Deviation	EUS(-100.0 ~ 100.0%)	EUS	EUS(0.0%)	Deviation alarm

#n = 1~4

5.7.4. Hysteresis Setting

Parameter for setting Alarm Hysteresis.

Symbol	Parameter	Setting range	Unit	Default	Display
A#n.DB	Alarm Hysteresis Value	EUS(0.0 ~ 100.0%)	EUS	EUS(0.5%)	Always

5.7.5. Delay Time Seting

Parameter for setting alarm output delay time during Alarm.

Symbol	Parameter	Setting range	Unit	Default	Display
A#n.DY	Alarm Delay Time	0.00 ~ 99.59 (mm.ss)	TIME	0 sec	Always

#n = 1~4

Displays and Types of Alarms

- Output Type
 - Forward : ON when alarm is on, OFF when alarm is off
 Reverse : OFF when alarm is
 - on, ON when alarm is off
- Standby Condition
 - When shifts Reset run to Program run.
 - when change the type of Alarm.

5.7.6. Alarm Mode Seting

Parameter for setting Alarm Mode

ALWA : The alarm mode is always executed irrespective of the operation / stop.

RUN : Alarm mode is only executed during operation.

Symbol	Parameter	Setting range	Unit	Default	Display
AL#n.M	Alarm #n Mode	ALWA, RUN	ABS	ALWA	Always

	-	Output Direct		Standby		Disalari	
NO.	Туре	For	Rev	Off	On	Display	
1	Upper of PV	0		0		AH.F	
2	Lower of PV	0		0		AL.F	
3	Upper of Deviation	0		0		DH.F	
4	Lower of Deviation	0		0		DL.F	
5	Upper of Deviation		0	0		DH.R	
6	Lower of Deviation		0	0		DL.R	
7	High/Low deviation out of range	0		0		DO.F	
8	High/Low deviation within of range	0		0		DI.F	
9	Upper of PV		0	0		AH.R	
10	Lower of PV		0	0		AL.R	
11	Upper of Valve **	0		0		VH.F	
12	Lower of Valve **	0		0		VL.F	
13	Upper of PV	0			0	AH,FS	
14	Lower of PV	0			0	AL,FS	
15	Upper of Deviation	0			0	DH.FS	
16	Lower of Deviation	0			0	DL.FS	
17	Upper of Deviation		0		0	DH.RS	
18	Lower of Deviation		0		0	DL.RS	
19	High/Low deviation out of range	0			0	DO.FS	
20	High/Low deviation within of range	0			0	DI,FS	
21	Upper of PV		0		0	AH.RS	
22	Lower of PV		0		0	AL.RS	
23	Upper of Valve **	0			0	VH.FS	
24	Lower of Valve **	0			0	VL.FS	
25	Upper of TSP	0		0		TSP.H	
26	Lower of TSP	0		0		TSP.L	
27	HBA *	0		0		HBA	

[Table4] Type of Alarm

* In case of HBA Option

** In case of enter a position proportional feedback

High of PV		Low of PV	PVOFF >
High of Deviation	DEV DB ALM.H *	Low of Deviation	DEV SP ALM.L OFF *
High / Low deviation out of range		DEV=0 DB DB	
High/Low deviation within of range	DEV DB E	DEV=0 DB	OFF +
Upper of Valve	V.VP OFF ALM	Lower of Valve	V.VP
High of TSP		Low of TSP	TSP ALM
НВА	HBCD ALM(HBCS) OFF		

☞ DEV : Deviation, DB : Hysteresis

[Fig.22] Alarm Operation

5.8. Inner Signal Group(G.IS)

5.8.1. Type To be Referenced Setting

- Parameter for setting Inner Signal operation.
- When NPV, EUS 0.5% Hysteresis is automatically applied.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.IST	Inner Signal Type	NSP, NPV, TSP	ABS	NPV	Always

#n = 1~2

5.8.2. Out or In Band Setting

Parameter for setting direction of Inner Signal band.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.ISB	Inner Signal Band	I.BD, O.BD	ABS	I.BD	Always

5.8.3. High/Low Limits of Band Setting

11 SH	
- 200	
11 SL	

- Parameter for setting high limit value of Inner Signal band.
- Parameter for setting low limit value of Inner Signal band.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.ISH	Inner Signal Range High	EU(0.0 ~ 100.0%) (1.ISL≤1.ISH)	EU	EU(0.0%)	Always
#n.ISL	Inner Signal Range Low	EU(0.0 ~ 100.0%) (1.ISL ≤ 1.ISH)	EU	EU(0.0%)	Always

#n = 1~2

5.8.4. Delay Time Setting

 Parameter for setting output delay time when in condition for Inner Signal operation.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.ISD	Inner Signal Delay	OFF, 0.01 ~ 99.59 (mm.ss)	TIME	OFF	Always

Example of Inner Signal Cases

■ [Case 1] PV HYS : INPUT = 0.0 ~ 100.0 → EUS 0.5% = 0.5℃

[[]Fig.23] Example of Inner Signal Case #1

[Case 2]

IST	ISB	ISL	ISH	ISD
NSP	OUT BAND	30.0℃	50.0℃	00.00

[[]Fig.24] Example of Inner Signal Case #2

[[]Fig.25] Example of Inner Signal Case #3

[Case 4]

IST	ISB	ISL	ISH	ISD
TSP	OUT BAND	30.0°C	50.0°C	00.00

[Fig.26] Example of Inner Signal Case #4

5.9. Timer Group(G.TMR)

5.9.1. Timer Operation Setting

- Parameter for setting start condition of timer
- \blacksquare When changing the timer type, time unit, and timer time, select one of (1), (2) and execute it
 - $\textcircled{\ensuremath{\mathbb O}}$ Initialize start condition of timer operation
 - RUN : Execute RUN / STOP
 - DI1,2: Execute DI1,2 ON / OFF
 - 2 Reset start condition of timer operation
 - Reset after OFF

Symbol	Parameter	Setting range	Unit	Default	Display
#n.TM.S	Timer Source	OFF, RUN, DI1, DI2 (Note1)	ABS	OFF	Always

#n = 1~2 * (Note1) : DI 1 and 2 are displayed when under setting, DI Option, DISL : 3

5.9.2. Type of Timer Setting

IEnE
dL

Parameter for setting timer type.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.TM.T	Timer Source	DLY1, DLY2, FLK1, FLK2	ABS	DLY1	Always

5.9.3. Timer Time Unit Setting

เะกับ
<u>nn.55</u>

Parameter for setting timer time unit.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.TMU	Timer Time Unit	HH.MM, MM.SS	ABS	MM.SS	Always

#n = 1~2

5.9.4. Timer Time Setting

Parameter for setting timer delay time.

Parameter for setting timer time.

Symbol	Parameter	Setting range	Unit	Default	Display
#n.TM.1	Timer Time 1	00.00 ~ 99.59 (#n.TMU)	#n.TMU	00.00	Always
#n.TM.2	Timer Time 2	00.00 ~ 99.59 (#n.TMU)	#n.TMU	00.00	Always

#n = 1~2

Timer Signal Operation

* DLY1(DELAY1)

- When TM.S is running, timer is ON after TM.1 (OFF TIME) and OFF when TM.S OFF.
- TMR(Timer Signal)
 - Set in EV1~4 parameters
 - Timer Signal is output in EV1~4, if set TMR1 and TMR2 in EV1~4 settings
- TM.1 > TM.S 🖙 Timer is OFF.

* DLY2(DELAY2)

- When TM.S is running, timer is ON after TM.1 (OFF TIME) and OFF after TM.2 (ON TIME).
- TM.2> TM.S 🖙 Timer is OFF.

% FLK1(FLICKER1)

- When TM.5 is running, timer is repeatedly ON after TM.1 (OFF TIME) and OFF after TM.2 (ON TIME).
- TM.1 = 0 imes Timer is ON until TM.S OFF.

[Fig.29] Timer Flicker 1

% FLK2(FLICKER2)

- When TM.5 is running, timer is ON and OFF after TM.2 (ON TIME) and ON again after TM.1 (OFF TIME).
- TM.1 = 0 \rightarrow Timer is ON until TM.S OFF.

[Fig.30] Timer Flicker 2

5.10. Heater Current Alarm Group(G.HBA)

5.10.1. Heater Current Display Setting

Parameter for displaying Hater Current.

Symbol	Parameter	Setting range	Unit	Default	Display
HB.CD	Heater Break Current Display	Display only (0~50A)	ABS	-	HBA Option

5.10.2. Heater Current Alarm Point Setting

Parameter for setting Heater Break values.

Symbol	Parameter	Setting range	Unit	Default	Display
HB.CS	Heater Break alarm Current	OFF, 1 ~ 50A	ABS	OFF	HBA Option

5.10.3. Heater Break Dead Band Setting

Parameter for setting Heater Break Dead Band.

Symbol	Parameter	Setting range	Unit	Default	Display
HB.DB	Heater Break Alarm Deadband	0 ~ 10A	ABS	1	HBA Option

Conditions for Detecting Heater Break Alarm

 MV output pulse width should be greater than 200ms. If the cycle time is set to 2 sec, MV should be greater than 10% (200ms duty ON).

[Fig.31] Conditions for Detecting Heater Break Alarm

5.10.4. Power Frequency Setting

Parameter for setting heater power frequency when using Heater break alarm.

Symbol	Parameter	Setting range	Unit	Default	Display
PWR.F	Power Frequence	60Hz, 50Hz	ABS	60Hz	HBA Option

5.10.5. CT Sensor Step-Up Ratio Setting

[t.r
800

Parameter for setting Step-Up Ratio of CT Sensor.

- 800 🖙 800:1
- 1000 ⇒ 1000:1

Symbol	Parameter	Setting range	Unit	Default	Display
CT.R	Current Trans Ratio	800, 1000	ABS	800	HBA Option

5.10.6. Bar Graph Setting

- Parameter for setting the bar kind of graph.
 - MV : Displays the control yield on a bar graph.
 - CUR : Displays the heater amperage on the bar graph.

Symbol	Parameter	Setting range	Unit	Default	Display
B.GRP	Bar Graph	MV, CUR	ABS	MV	HBA Option

5.10.7. Heater Break Graph High/Low Setting

- Parameter for setting the high limit using the type of graph as the bar graph heater current
- Parameter for setting the low limit using the type of graph as the bar graph heater current

Symbol	Parameter	Setting range	Unit	Default	Display
HB.BH	Heater break bar high	0~50 (HB.BL < HB.BH)	ABS	50	B.GRP=CUR
HB.BL	Heater break bar low		ABS	0	B.GRP=CUR

5.11. Loop Break Alarm Group(G.LBA)

5.11.1. Loop Break Alarm Setting

- Parameter for using Loop Break Alarm.
- Alarm is OFF when stopped or in error.
- Only checks when MV is in OH or OL.

Symbol	Parameter	Setting range	Unit	Default	Display
LBA.U	Loop Break Alarm Use	OFF, ON	ABS	OFF	Always

Alarm is OFF when under AT (Auto Tuning).

Triggering Loop Break Alarm (LBA)

LBA is turned on when NPV does not change for more than 2.0°C for the duration of LBATM, provided that, MV is on either OH or OL.

Output	Co	mmon Control	Heating and Cooling Control		
Forward	OUT = 0.0% (OL)	If NPV does not decrease below 2.0°C for the duration of LBATM	OUT _c = 100.0%(OH _c)	If NPV does not decrease below 2.0°C for the duration of LBATM	
	OUT = 100.0% (OH)	If NPV does not increase over 2.0°C for the duration of LBATM	OUT _H = 100.0%(OH _H)	If NPV does not increase over 2.0°C for the duration of LBATM	
Reverse	OUT = 0.0% (OL)	If NPV does not increase over 2.0°C for the duration of LBATM	OUTc = 100.0%(OHc)	If NPV does not increase over 2.0°C for the duration of LBATM	
	OUT = 100.0% (OH)	If NPV does not decrease below 2.0°C for the duration of LBATM	OUT _H = 100.0% (OH _H)	If NPV does not decrease below 2.0°C for the duration of LBATM	

5.11.2. Loop Break Alarm Dead Band Setting

Parameter for setting Loop Break Alarm Dead Band

Symbol	Parameter	Setting range	Unit	Default	Display
LBA.D	Loop break Alarm dead band	EUS(0.0~100.0)	EUS	EUS(0.0)	Always

5.11.3. Loop Break Alarm Time Setting

Parameter for setting Loop Break Alarm Time for checking Loop Break Alarm

Symbol	Parameter	Setting range	Unit	Default	Display
LBA.T	Loop break Alarm time	1 ~ 7200 sec	ABS	480	Always

[Fig.32] Loop Break Alarm Dead Band

5.12. Retransmission Group(G.RET)

5.12.1. Type of Retransmission Setting

- Parameter for selecting type of retransmission
- LPS : Retransmits supply power for sensors
 - PV : Retransmits current sensor input values
 - SP : Retransmits current target value
 - MV : Retransmits current control output value
 - V.VP : Transfer valve position during Position proportional control

Symbol	Parameter	Setting range	Unit	Default	Display
RET	Retransmission Type	LPS, PV, SP, MV, V.VP (V.VP : Position proportiona)	ABS	PV	Always

5.12.2. High/Low Limits of Retransmission Setting

- Parameter for setting high/low limits for retransmission
- If type of retransmission output is PV or SP, high limit (20mA) and low limit (4mA) are set as RET.H and RET.L, respectively.
 (If RET is set as MV, RET.H and RET.L are displayed as RET.H = 100.0% and RET.L = 0.0%.)

Symbol	Parameter	Setting range	Unit	Default	Display
RET.H	Retransmission High Limit	TC, RTD : IN.RL ~ IN.RH	FU	IN.RH (TC, RTD)	RET.T
RET.L	Retransmission Low Limit	(RET.L < RET.H)	EU	IN.SH (DCV)	= PV or SP

Retransmission Output

In Case the Type of Retransmission is 'PV' or 'SP'

[Fig.33] In Case the Type of Retransmission is 'P	PV'	or 'SP'
---	-----	---------

In Case the Type of Retransmission is 'MV'

[Fig.34] In Case the Type of Retransmission is 'MV'

5.13. Communication Group(G.COM)

РВ (SET) ► ▶ (SET) ▶ RUN Screen SET 3se STUP **FIRF** (v/P1) ► ► G,AT G.CTL G.COM Twice SET Pass

- Group of communication parameters
- For more details, refer to Communication Manual.

Parameter for setting communication Protocol.

Symbol	Parameter	Setting range	Unit	Default	Display
COM.P	Communication Protocol	PCCO, PCC1, MBS.A, MBS.R, SYN.M, P.OMR, P.MIT, P.LG, P.YKO, P.KEN, P.SIE	ABS	PCC1	Option

Parameter for setting communication speed (BAUD RATE).

Symbol	Parameter	Setting range	Unit	Default	Display
BAUD	Baud Rate	9600, 19200, 38.4K, 57.6K, 115.2K	ABS	38.4K	Option

Parameter for setting Communication Parity.

Symbol	Parameter	Setting range	Unit	Default	Display
PRTY	Parity	NONE, EVEN, ODD	ABS	NONE	Option

Parameter for setting Communication Stop Bit.

Symbol	Parameter	Setting range	Unit	Default	Display
S.BIT	Stop Bit	1, 2	ABS	1	Option

Parameter for setting Communication Data Length.

Parameter 'D.LEN' is not display when 'COM.P' sets 'MODBUS ASCII' or 'RTU'

Symbol	Parameter	Setting range	Unit	Default	Display
D.LEN	Data Length	7,8	ABS	8	Option and COM.P = PCC0, PCC1, SYN .M

Parameter for setting Communication Address for controller.

Symbol	Parameter	Setting range	Unit	Default	Display
ADDR	Address	1 ~ 99 (Max 31 can connect)	ABS	1	Option

	Parameter for setting
הללה	The RP.TM is a Wa
	commands when o
	The setting of RP.T
	processing of com

Parameter for setting Communication Response Time.
 The DD TM is a Multitude Time to extra set of the set o

¹ The RP.TM is a Waiting Time to return upper device after processing received commands when controller received it from upper device.

The setting of RP.TM is setting by 10 msec times. In case of RP.TM = 0, If the processing of commands is over, it returns response to upper device.

Symbol	Parameter	Setting range	Unit	Default	Display
RP.TM	Response Time	0 ~ 10 (x10ms)	ABS	0	Option

5.14. PLC Group(G.PLC)

NOVA

▶ (SET) ► (VPI ► Ы οŪ 52 (SET) 🕨 SET 3 RUN Screer STUP SET (VPI) SET 🕨 (V/PI) G.AT G.CTL G.PLC Twice SET Group of PLC parameters

- PLC Group is displayed when selected PLC Protocol in Communication Progocol(Range of COM.P : P.OMR, P.MIT, P.LG, P.YKO, P.KEN and P.SIE)
- For more details, refer to Communication Manual.

- Parameter for setting Send Delay Time
- Parameter for setting Receive Delay Time

Symbol	Parameter	Setting range	Unit	Default	Display
SW.TM	Send Delay Time	0~50	ABS	10	COM.P
RW.TM	Receive Delay Time	500~1000	ABS	1000	= PLC

ñUno	
i	

Parameter for setting Max Number of Connections

Symbol	Parameter	Setting range	Unit	Default	Display
MU.NO	Max Number Of Connections	1~31	ABS	1	COM.P = PLC

Parameter for setting Type of Register

Symbol	Parameter	Setting range	Unit	Default	Display
R.TYP	Register Type	0~3	ABS	0	COM.P = PLC

Parameter for setting Start Address

Symbol	Parameter	Setting range	Unit	Default	Display
S.ADR	Start Address	0~FFFF	ABS	03E8	COM.P = PLC

Parameter for setting Data Map

Symbol	Parameter	Setting range	Unit	Default	Display
MAP.S	Data Map Select	MAS.M, LOC.M	ABS	MAS.M	COM.P = PLC

Parameter for Setting Read Address

Symbol	Parameter	Setting range	Unit	Default	Display
RO.01	Read Address 01	OFF, 0~200	ABS	151	COM.P = PLC
:	÷	:	:	:	:
RO.13	Read Address 13	OFF, 0~200	ABS	OFF	COM.P = PLC

Parameter for setting Write Address

Symbol	Parameter	Setting range	Unit	Default	Display
RW.01	Write Address 01	OFF, 0~150	ABS	1	COM.P = PLC
:	÷	:	:	:	:
RW.15	Write Address 15	OFF, 0~150	ABS	OFF	COM.P = PLC

5.15. Now PLC Display Group(G.NPL)

[P	₩]►	(SET)	▶ <i>₽гоŨ</i>	► (VPI)	► <u>SEUP</u>	▶ (SET)	•
RUN So	reen	SET 3sec	PROG	Once	STUP	SET	
GA	<u>7</u> ► ►	(V/P1) Twice	Password	SET 🕨	<u>6.cn</u> •	Eleven times	G.NPL

- Group of PLC Display parameters
- PLC Display Group is displayed when selected PLC Protocol in Communication Progocol(Range of COM.P.: P.OMR, P.MIT, P.LG, P.YKO, P.KEN and P.SIE)
- Parameter for dispalying Now Send Delay Time

Parameter for dispalying Now Receive Delay Time

Symbol	Parameter	Setting range	Unit	Default	Display
N.SWT	Now Send Delay Time	Reading area	ABS	0	COM.P = PLC
N.RWT	Now Receive Delay Time	Reading area	ABS	0	COM.P = PLC

Parameter for dispalying Now Register Type

Symbol	Parameter	Setting range	Unit	Default	Display
N.RTY	Now Register Type	Reading area	ABS	0	COM.P = PLC

Parameter for dispalying Now Start Address

Symbol	Parameter	Setting range	Unit	Default	Display
N.SAD	Now Start Address	Reading area	ABS	0	COM.P = PLC

Parameter for dispalying Now Read Addres

Symbol	Parameter	Setting range	Unit	Default	Display
N.O01	Now Read Address 01	Reading area	ABS	OFF	COM.P = PLC
:	÷	:	:	:	:
N.O13	Now Read Address 13	Reading area	ABS	OFF	COM.P = PLC

Parameter for dispalying Now Write Address

Symbol	Parameter	Setting range	Unit	Default	Display
N.W01	Now Write Address 01	Reading area	ABS	OFF	COM.P = PLC
:	÷	:	:	:	:
N.W15	Now Write Address 15	Reading area	ABS	OFF	COM.P = PLC

6. Display Error and Correction

[Table5] Display Error and Correction

Display Error	Error Contents	Correction
E,SYS	EEPROM, Data Loss	Ask Repair
E.RJC	RJC Sensor Failure	Ask Repair
Light off Decimal point of SP	Communication Failure	Check Comm Cable
S.OPN	Sensor Open	Check Sensor
E.AT	AT Time Out (27h over)	Check Process
V.OPN	Valve Feedback input burnout	Check the feedback input
V.CER	Automatic valve calibration error	Check Valve Process

EMO			

Part II Communication Manual

1.Communication Overview	5
1.1. SP500E Communication	5
1.2. Communication Wiring	5
1.3. Communication Parameters	6
2.PC-LINK Communication	8
2.1. Composition of PC-LINKCommunication Commands	8
2.2. CHECK SUM	9
2.3. Type of Commands	10
2.3.1. RSD Command	11
2.3.2. RRD Command	12
2.3.3. WSD Command	13
2.3.4. WRD Command	
2.3.5. STD Command	
2.3.6. CLD Command	
2.3.7. AMI Command	17
2.3.8. Error Code	
3. MODBUS Communication	19
3.1. Composition of MODBUS Communication Command	19
3.2. Communication Function Code	20
3.2.1. Function Code - 03	21
3.2.2. Function Code - 06	22
3.2.3. Function Code - 08	23
3.2.4. Function Code - 16	24

4. Programless Communication	25
4.1. Overview	25
4.2. Communication Setting	25
4.2.1. Protocol Setting	
4.2.2. Baud rate, Parity bit, Stop Bit and Data Length Setting	
4.2.3. Communication Address Setting	
4.2.4. Send Delay Time, Receive Wait Time	
4.2.5. Max Number of Connections	
4.2.6. Register Type Setting	
4.2.7. Start Address Setting	
4.2.8. Data Map Setting	
4.2.9. Memory Area Setting	
4.3. Data Processing and Communication Status	35
4.3.1. Communication Procedure with PLC	
4.4. Connection to OMRON PLC	37
4.4.1. Connection Diagram	
4.4.2. Communication Wiring	
4.4.3. SP500E Setting	
4.4.4. PLC Setting	
4.4.5. Data Monitoring and Setting	
4.5. Connection to MITSUBISHI PLC	42
4.5.1. Connection Diagram	
4.5.2. Communication Wiring	
4.5.3. SP500E Setting	
4.5.4. PLC Setting	
4.5.5. Data Monitoring and Setting	

4.6. Connection to LG PLC	46
4.6.1. Connection Diagram	
4.6.2. Communication Wiring	
4.6.3. SP500E Setting	
4.6.4. PLC Setting	
4.6.5. Data Monitoring and Setting	
4.7. Connection to YOKOGAWA PLC	50
4.7.1. Connection Diagram	50
4.7.2. Communication Wiring	50
4.7.3. SP500E Setting	51
4.7.4. PLC Setting	51
4.7.5. Data Monitoring and Setting	51
4.8. Connection to KEYENCE PLC	53
4.8.1. Connection Diagram	 53
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 	53 53 53
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 4.8.3. SP500E Setting 	53
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 4.8.3. SP500E Setting 4.8.4. PLC Setting 	
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 4.8.3. SP500E Setting 4.8.4. PLC Setting 4.8.5. Data Monitoring and Setting 	53 53 53 54 54 54 54 55
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 4.8.3. SP500E Setting 4.8.4. PLC Setting 4.8.5. Data Monitoring and Setting 4.9. Connection to SIEMENS PLC 	
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 4.8.3. SP500E Setting 4.8.4. PLC Setting 4.8.5. Data Monitoring and Setting 4.9.1. Connection Diagram 	
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 4.8.3. SP500E Setting 4.8.4. PLC Setting 4.8.5. Data Monitoring and Setting 4.9.5. Data Monitoring and Setting 4.9.1. Connection Diagram 4.9.2. Communication Wiring 	
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 4.8.3. SP500E Setting 4.8.4. PLC Setting 4.8.5. Data Monitoring and Setting 4.9. Connection to SIEMENS PLC 4.9.1. Connection Diagram 4.9.2. Communication Wiring 4.9.3. SP500E Setting 	
 4.8. Connection to KEYENCE PLC 4.8.1. Connection Diagram 4.8.2. Communication Wiring 4.8.3. SP500E Setting 4.8.4. PLC Setting 4.8.5. Data Monitoring and Setting 4.9.1. Connection Diagram 4.9.2. Communication Wiring 4.9.3. SP500E Setting 4.9.4. PLC Setting 	

5. Other Communication Functions 61
5.1. SYNC Communication
5.2. Broadcast Mode
5.3. Service Port
6.Register Guide 64
6.1. PROCESS
6.2. FUNCTION GROUP
6.3. SIGNAL/TIMER GROUP
6.4. ALARM GROUP 68
6.5. PID GROUP
6.6. IN/OUT GROUP
6.7. COMM GROUP
6.8. PLC GROUP
6.9. NPL GROUP
6.11. PT INFO GROUP
6.12. PT1/PT2 GROUP
6.13. D-Register Table
1.Communication Overview

1.1. SP500E Communication

SP500E employs the half-duplex RS-485 communication interface which enables connections up to 31 devices.

*MAX 31EA

1.2. Communication Wiring

The RS-485 communication wiring between SP500E and devices are as follows.

SP590/SP580/ST560	SP570	SP540	SP510	
RTX+	RTX+	17 (CF) RTX+	7 RTX+	
RTX-	RTX-	18 RTX-		

1.3. Communication Parameters

Communication parameters are to set the communication conditions and their contents are as follows.

Parameter	Meaning	Set Value	Description	Initial Value
	-	0	Standard protocol	
		1	Standard protocol + Check Sum	0
		2	MODBUS ASCII	
		3	MODBUS RTU	
		4	SYNC-Master	
	Communication	5	SYNC-Slave	
COM.P	protocol	6	Omron PLC	
		7	Mitsubishi PLC	
		8	LG PLC	1
		9	Yokogawa PLC	
		10	Keyence PLC - Modbus slave mode	
		11	Siemens PLC	
		0	9600bps	
		1	19200bps	1
BAUD	Baud rate	2	38400bps	0
		3	57600bps	
		4	115200bps	
		NONE	No parity	0
PRTY	Parity bit	EVEN	Even parity	
		ODD	Odd parity	
S RIT	Stop bit	1	1bit	0
10,0	Stop bit	2	2bits	
	Data length	7	7bits	
DILLIN	Data lengar	8	8bits	
ADDR	Address	1~99	Address setting	1
RP.TM	Response time	1~10	Response time	0
R.BS	Remote SP	-	SP during synchronization	EUS(0.0%)

Communication Group Parameters

For the communication settings to apply, turn off and on the device.

PLC Group Parameters

Parameter	Meaning	Set Value	Description	Initial Value
SW.TM	Send delay time	0~50	Send delay [unit :ms]	10
RW.TM	Receive wait time	500~1000	Receive delay [unit :ms]	1000
Milloit	Max number of	1~21	Max number of units for connection	1
IVI, UTIL	units for connection	1.421	to programless communication	ļ
R.TYP	Register type	0~3	Send/receive data area	0
S.ADR	Start address	0~FFFF	Start address setting	3E8
MAP.S	Select data map	0, 1	'0' : Master, '1' : Local	0
R0.01~R0.13	Read area setting	1~200	Reading area address setting[13Ea]	-
RW.01~RW.15	Write area setting	1~150	Writing area address setting[15Ea]	-

PLC Group is displayed when PLC Protocol is selected in Communication Protocol (COM.P).

2. PC-LINK Communication

2.1. Composition of PC-LINKCommunication Commands

Basic communication commands that send data from communication units to ST500E are as follows.

PC-LINK Protocol

1	2	3	4	6	0	8
STX	SP500E address	Command	,	Data by command rule	CR	ŀF

PC-LINK+SUM Protocol

1	2	3	4	6	6	Ø	8
STX	SP500E address	Command	,	Data by command rule	SUM	CR	LF

① Communication command start text

Indicates start of communication command with STX, an ASCII code, with code value of 0x02

② SP500E address

Indicates unit address, the SP500E unit number for communication.

③ Command

Command for communication(Refer to 2.3. Type of Commands)

④ Separator

Indicates the separators that separate command and data using commas

⑤ Data

Indicates certain strings conforming to communication commands

6 SUM

Each of texts between STX and SUM is converted from the 1-byte (8-bit) code to 2-digit (hexadecimal) ASCII codes

⑦, ⑧ End-of-text character

An ASCII code that indicates the end of communication command and expressed as CR(0x0D) or LF(0x0A).

2.2. CHECK SUM

Example of SUM

 When reading D-Register from NPV(D0001) to SP.SL(D0005)

 Send
 :
 [STX]01RSD,05,0001[CR][LF]

 Send(incl. CheckSum)
 :
 [STX]01RSD,05,0001C8[CR][LF]

As shown below, each text from 01RSD,05,0001 converted into ASCII code and added as a hexadecimal number is 2C8. The last two digits, C8, is used as CheckSum.

ASCII Control Code Chart

Prefix Suffix	0	1	2	3	4	5	6	7
0	NUL	DLE	SPACE	0	@	Р	`	Р
1	SOH	DC1	ļ	1	А	Q	а	q
2	STX	DC2	æ	2	В	R	b	r
3	ETX	DC3	#	3	С	S	с	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	е	u
6	ACK	SYN	&	6	F	V	f	v
7	BEL	ETB	¢	7	G	W	g	w
8	BS	CAN	(8	Н	Х	h	х
9	HT	EM)	9	I	Y	i	у
А	LF	SUB	*	:	J	Z	j	Z
В	VT	ESC	+	;	К	[k	{
С	FF	FS	,	<	L	¥	I	I
D	CR	GS	-	=	М]	m	}
E	SO	RS		>	Ν	^	n	~
F	SI	US	/	?	0	_	0	DEL

2.3. Type of Commands

Communication commands can be categorized into Self-Information Command to read information of SP500E and Read / Write Command to read or write values in D-Register.

Self-Information Command

Command	Description
AMI	Displays SP500E model name and Version-Revision

Read/Write Command

Command	Description
RSD	Continuous reading of D-Register
RRD	Random reading of D-Register
WSD	Continuous writing of D-Register
WRD	Random writing of D-Register
STD	Random registration of D-Register
CLD	Call D-Register from STD

Each command may read or write up to 64 D-Registers. In case of STD / CLD, registered items are initialized when power is turned off and register after turned on.

2.3.1. RSD Command

A command used to read a series of data in D-Register.

Transmission Format

Bytes	1	2	3	1	2	1	4	2	1	1
Description	STX	SP500E address	RSD	,	Number	,	D-Reg.	SUM	CR	LF

Reception Format

Bytes	1	2	3	1	2	1	4	1	
Description	STX	SP500E address	RSD	,	ОК	,	Data - 1	,	

1	4	2	1	1
,	Data - n	SUM	CR	LF

- Number: 1 ~ 64
- Data : Hexadecimal number without decimal point

Example

When reading D-Register from NPV(D0001) to NSP(D0002)

Send : [STX]01RSD,02,0001[CR][LF] Send (incl. CheckSum) : [STX]01RSD,02,0001C6[CR][LF] ([STX] = 0x02, [CR] = 0x0d, [LF] = 0x0a)

When received NPV(D0001) value is 50.0 and NSP(D0002) value is 30.0

Receive	:	[STX]01RSD,OK,01F4,012C[CR][LF]
Receive (incl. CheckSum)	:	[STX] 01RSD,OK,01F4,012C19[CR][LF]

- Process of converting the received PV value of hexadecimal number data to display
 - (1) Conversion to decimal number : 01F4(hexadecimal number) \rightarrow 500(decimal number)
 - (2) Multiply 0.1 to converted value : 500 \star 0.1 \rightarrow 50.0

2.3.2. RRD Command

A command used to read random data in D-Register.

Transmission Format

Bytes	1	2	3	1	2	1	4	1	
Description	STX	SP500E address	RRD	,	Number	,	D-Reg 1	,	

1	4	2	1	1
,	Data - n	SUM	CR	LF

Reception Format

Bytes	1	2	3	1	2	1	4	1	
Description	STX	SP500E address	RRD	,	ОК	,	Data - 1	,	

1	4	2	1	1
,	Data - n	SUM	CR	LF

■ Number:1~64

Data : Hexadecimal number without decimal point

Example

■ When reading D-Register from NPV(D0001) to NSP(D0002)

Send	:	[STX]01RRD,02,0001,0002[CR][LF]
Send(incl. CheckSum)	:	[STX]01RRD,02,0001,0002B2[CR][LF]

When received NPV(D0001) value is 50.0 and NSP(D0002) value is 30.0

Receive	:	[STX]01RRD,OK,01F4,012C[CR][LF]
Receive(incl. CheckSum)	:	[STX]01RRD,OK,01F4,012C18[CR][LF]

2.3.3. WSD Command

A command used to write a series of data in D-Register.

Transmission Format

Bytes	1	2	3	1	2	1	4	1	4
Description	STX	SP500E address	WSD	,	Number	,	D-Reg.	,	Data - 1

1	 1	4	2	1	1
,	 ,	Data - n	SUM	CR	LF

Reception Format

Bytes	1	2	3	1	2	2	1	1
Description	STX	SP500E address	WSD	,	Number	,	D-R eg.	,

- Number: 1 ~ 64
- Data : Hexadecimal number without decimal point

Example

```
    When writing data on IN.RH(D0603) and IN.RL(D0604) in input range
    IN.RH setting: 1000 → To hexadecimal (0x03E8)
    IN.RL setting: -100 → To hexadecimal (0xFF9C)
    Send : [STX]01WSD,02,0603,03E8,FF9C[CR][LF]
    Send(incl. CheckSum) : [STX]01WSD,02,0603,03E8,FF9C12[CR][LF]
```

2.3.4. WRD Command

A command used to write random data in D-Register.

Transmission Format

Bytes	1	2	3	1	2	1	4	1	4
Description	STX	SP500E address	WRD	,	Number	,	D-Reg 1	,	Data - 1

1	 1	4	1	4	2	1	1
,	 ,	D-Reg n	,	Data - n	SUM	CR	LF

Reception Format

Bytes	1	2	3	1	2	2	1	1
Description	STX	SP500E address	WRD	,	ОК	SUM	CR	LF

- Number: 1 ~ 64
- Data : Hexadecimal number without decimal point

Example

■ When writing data on IN.RH(D0603) and IN.RL(D0604) in input range

IN.RH setting : $1000 \rightarrow$ Remove decimal place(1000) \rightarrow To hexadecimal (0x03E8)

IN.RL setting : -100 \rightarrow Remove decimal place(-100) \rightarrow To hexadecimal (0xFF9C)

Send	:	[STX]01WRD,02,0603,03E8,0604,FF9C[CR][LF]
Send(incl. CheckSum)	:	[STX]01WRD,02,0603,03E8,0604,FF9C07[CR][LF]

2.3.5. STD Command

A command to pre-register D-Register on SP500E.

Transmission Format

Bytes	1	2	3	1	2	1	4	1	4
Description	STX	SP500E address	STD	,	Number	,	D-Reg 1	,	D-Reg 2

1	 1	1 4		4	2	1	1
,	 ,	D-Reg n	,	Data - n	SUM	CR	LF

Reception Format

Bytes	1	2	3	1	2	2	1	1
Description	STX	SP500E address	STD	,	OK	SUM	CR	LF

■ Number:1~64

Example

When registering NPV(D0001), NSP(D0002) and MVOUT(D0006)

Send

: [STX]01STD,03,0001,0002,0006[CR][LF]

Send(incl. CheckSum) : [STX]

[STX]01STD,03,0001,0002,0006A8[CR][LF]

2.3.6. CLD Command

A command to read pre-registered D-Register by STD command from SP500E.

Transmission Format

Bytes	1	2	3	2	1	1
Description	STX	SP500E address	CLD	SUM	CR	LF

Reception Format

Bytes	1	2	3	1	2	1	4	1	4
Description	STX	SP500E address	CLD	,	ОК	,	Data - 1	,	Data - 2

1	 1	4	1	4	2	1	1
,	 ,	Data - (n-1)	,	Data - n	SUM	CR	LF

Data : Hexadecimal number without decimal point

Example

Send	:	[STX]01CLD[CR][LF]
Send(incl. CheckSum)	:	[STX]01CLD34[CR][LF]

2.3.7. AMI Command

A command used to check information on SP500E.

Transmission Format

bytes	1	2	3	2	1	1
Description	STX	SP500E address	AMI	SUM	CR	LF

Reception Format

bytes	1	2	3	1	2	1
Description	STX	SP500E address	AMI	,	OK	,

9	1	7	2	1	1
Model name	SPACE	Version-Revision	SUM	CR	LF

Example

When checking information on SP500E

 Send
 :
 [STX]01AMI[CR][LF]

 Send(ind, CheckSum)
 :
 [STX]01AMI38[CR][LF]

 Receive
 :
 [STX]01AMI,OK,SP59:9696[SP]V00-R00[CR][LF]

 Receive(ind, CheckSu)
 :
 [STX]01AMI,OK SP59:9696[SP]V00-R0037[CR][LF]

2.3.8. Error Code

The following is sent from SP500E when in error during communication.

Bytes	1	2	2	2	2	1	1
Description	STX	SP500E address	NG	Error code	SUM	CR	LF

Error Codes

Error Code	Description	Note
01	When designated a nonexistent command	
02	WHen designated a nonexistent D-Register	
04	Data setting error	Use of ineffective texts or data (Data employs hexadecimal numbers, 0~9 and A~F)
08	Wrong format	-Format different from designated command -Number different from designated number
11	CheckSum error	
12	Monitoring command error	No designated monitoring command
00	Other errors	

3. MODBUS Communication

3.1. Composition of MODBUS Communication Command

MODBUS communication comes in two modes, ASCII and RTU.

Data Format

Description	ASCII	RTU
Prefix	:(colon)	None
Suffix	[CR][LF]	None
Data Length	7-bit(fixed)	8-bit(fixed)
Data Format	ASCII	Binary
Error Detection	LRC (Longitudinal Redundancy Check)	CRC-16 (Cyclic Redundancy Check)
Data Interval	Less than 1s	Below 24-bit time

Frame composition is as follows.

Modbus ASCII

Prefix	Communication Address	Function Code	Data	LRC Check	Suffix
1 character	2 characters	2 characters	N characters	2 characters	2 characters (CR+LF)

Modbus RTU

Prefix	Communication Address	Function Code	Data	CRC Check	Suffix
None	8-bit	8-bit	N * 8-bit	16-bit	None

N: Number of hexadecimal data

3.2. Communication Function Code

MODBUS Communication Function Codes are composed of function codes to read and write D-Register and Loop-Back detection function codes.

Function Code	Description
03	Continuous reading of D-Register
06	Writing of single D-Register
08	Diagnostics(Loop-Back Test)
16	Continuous writing of D-Register

When using MODBUS protocol, because D-Register starts from 0, 1 must be subtracted from the

numbers in D-Register table.

3.2.1. Function Code - 03

■ Function Code – 03 can continuously read up to 64 items in D-Register.

Transmission Format

Description	ASCII	RTU
Communication Prefix	:(Colon)	None
Communication Address	2 characters	8-bit
Function Code - 03	2 characters	8-bit
D-Register Hi	2 characters	8-bit
D-Register Lo	2 characters	8-bit
Number to Read Hi	2 characters	8-bit
Number to Read Lo	2 characters	8-bit
Error Detection	2 characters	16-bit
Communication Suffix	2 characters(CR+LF)	None

Example

When reading D-Register from NPV(D0001) to NSP(D0002)

 MODBUS ASCII
 :
 :01030000002FA[CR][LF]

 MODBUS RTU
 :
 01030000002C40B

Apply numbers from D-Register table subtracted by 1.

Reception Format

Description	ASCII	RTU
Communication Prefix	:(Colon)	None
Communication Address	2 characters	8-bit
Function Code - 03	2 characters	8-bit
Data Bytes	2 characters	8-bit
Data - 1 Hi	2 characters	8-bit
Data - 1 Lo	2 characters	8-bit
Data - n Hi	2 characters	8-bit
Data - n Lo	2 characters	8-bit
Error Detection	2 characters	16-bit
Communication Suffix	2 characters(CR+LF)	None

Example

■ When the received NPV(D0001) value is 25.0 and NSP(D0002) value is 100.0

MODBUS ASCII : :01030400FA03E813[CR][LF]

MODBUS RTU : 01030400FA03E8DABC

3.2.2. Function Code - 06

Function Code - 06 allows the sure to enter a single D-Register entry.

Transmission Format

Description	ASCII	RTU
Communication Prefix	:(Colon)	None
Communication Address	2 characters	8-bit
Function Code - 06	2 characters	8-bit
D-Register Hi	2 characters	8-bit
D-Register Lo	2 characters	8-bit
Write Data Hi	2 characters	8-bit
Write Data Lo	2 characters	8-bit
Error Detection	2 characters	16-bit
Communication Suffix	2 characters(CR+LF)	None

Example

When setting 1000 to IN.RH(D0603) for operation

MODBUS ASCII : :0106025B03E8B1[CR][LF] MODBUS RTU : 0106025B03E8F91F

Apply numbers from D-Register table subtracted by 1.

Reception Format

Description	ASCII	RTU	
Communication Prefix	:(Colon)	None	
Communication Address	2 characters	8-bit	
Function Code - 06	2 characters	8-bit	
D-Register Hi	2 characters	8-bit	
D-Register Lo	2 characters	8-bit	
Write Data Hi	2 characters	8-bit	
Write Data Lo	2 characters	8-bit	
Error Detection	2 characters	16-bit	
Communication Suffix	2 characters(CR+LF)	None	

Example

Under normal setting, the user will receive as the following.

MODBUS ASCII : :0106025B03E8B1[CR][LF] MODBUS RTU : 0106025B03E8F91F

3.2.3. Function Code - 08

Function Code - 08 is used for self-diagnosis.

Transmission Format

Description	ASCII	RTU	
Communication Prefix	:(Colon)	None	
Communication Address	2 characters	8-bit	
Function Code - 08	2 characters	8-bit	
Diagnosis Code Hi	2 characters	8-bit	
Diagnosis Code Lo	2 characters	8-bit	
Data Hi	2 characters	8-bit	
Data Lo	2 characters	8-bit	
Error Detection	2 characters	16-bit	
Communication Suffix	2 characters(CR+LF)	None	

Example

When sent the following frame for self-diagnosis

MODBUS ASCII	:	:01080000002F5[CR][LF]
MODBUS RTU	:	0108000000261CA

Reception Format

Description	ASCII	RTU
Communication Prefix	:(Colon)	None
Communication Address	2 characters	8-bit
Function Code - 08	2 characters	8-bit
Diagnosis Code Hi	2 characters	8-bit
Diagnosis Code Lo	2 characters	8-bit
Data Hi	2 characters	8-bit
Data Lo	2 characters	8-bit
Error Detection	2 characters	16-bit
Communication Suffix	2 characters(CR+LF)	None

Example

Under normal setting, the user will receive as the following.

 MODBUS ASCII
 :
 :01080000002F5[CR][LF]

 MODBUS RTU
 :
 0108000000261CA

3.2.4. Function Code - 16

Function Code - 16 allows the user to enter up to 64 items in a series of D-Register.

Transmission Format

Description	ASCII	RTU
Communication Prefix	:(Colon)	None
Communication Address	2 characters	8-bit
Function Code - 16	2 characters	8-bit
D-Register Hi	2 characters	8-bit
D-Register Lo	2 characters	8-bit
Number to Write Hi	2 characters	8-bit
Number to Write Lo	2 characters	8-bit
Data Bytes	2 characters	8-bit
Data - 1 Hi	2 characters	8-bit
Data - 1 Lo	2 characters	8-bit
Data - n Hi	2 characters	8-bit
Data - n Lo	2 characters	8-bit
Error Detection	2 characters(CR+LF)	None
Communication Suffix	2 characters	16-bit

Example

When setting 1000 and -100 to IN.RH(D0603) and IN.RL(D0604), respectively to change setting

MODBUS ASCII : :0110025B00020403E8FF9C06[CR][LF]

MODBUS RTU : 0110025B000204000100326FA9

Reception Format

Description	ASCII	RTU
Communication Prefix	:(Colon)	None
Communication Address	2 characters	8-bit
Function Code - 16	2 characters	8-bit
D-Register Hi	2 characters	8-bit
D-Register Lo	2 characters	8-bit
Number to Write Hi	2 characters	8-bit
Number to Write Lo	2 characters	8-bit
Error Detection	2 characters	16-bit
Communication Suffix	2 characters(CR+LF)	None

Example

Under normal setting, the user will receive as the following.

MODBUS ASCII	:	:0110025B000290[CR][LF]
MODBUS RTU	:	0110025B000231A3

4. Programless Communication

4.1. Overview

SP500E can regulate the controller through parameter read/write function without protocol PLC and programs. Also, the Slave Module can receive information from Master Module without additional setting and send them to PLC.

4.2. Communication Setting

4.2.1. Protocol Setting

Built-in PLC protocols in SP500E are OMRON, MITSUBISH, LG, YOKOGAWA, KEYENCE and SIEMENS. The PLC can
control and communicate without ladder programs.

Group	Parameter	Set Value	Description											
ũ.Coñ CoñP		P.onr	OMRON SYSMAC Protocol											
		P.ALE	MITSUBISHI MELSEC Q/QnACPU Protocol											
	r -n	P.LG	LG MASTER-K(XGK, XGB, XBC) Protocol											
	Lonr	P.YĽo	YOKOGAWA FA-M3 Protocol											
													P.ĽEn	KEYENCE MODBUS RTU Protocol
			P.ST E	SIEMENS MODBUS RTU Protocol										

4.2.2. Baud rate, Parity bit, Stop Bit and Data Length Setting

For setting speed, parity bit, stop bit and data length for communication.

Group	Parameter	Set Value	Description	
		9600	9600	
		19200	19200	
	ьЯИд	38.4Ľ	38400(Initial Value)	Set communication speed
		57.6 <i>Ľ</i>	57600	
бСол РгЕУ 5.61 Е		I IS.2Ľ	115200	
	РгЕУ	nonE	NONE(Initial Value)	
		EBEn	EVEN	Set communication parity
	odd	ODD		
	5.67 E	1, 2	Set communication stop bit (Initial Value : 1)	
	dLEn	ר, 8	Set communication	data length (Initial Value : 8)

4.2.3. Communication Address Setting

SP500E Series can set up to addresses 1 to 99, where the first, 1, is Master. Master unit is essential for PLC communication.

Group	Parameter	Set Value	Description
GE oñ	Rddr	l~99	Set communication address(Initial Value : 1)

4.2.4. Send Delay Time, Receive Wait Time

Sets send delay time and receive wait time. Send delay time denotes delay time required for ST500E to send data and receive wait time denotes waiting time for a response from PLC.

Group	Parameter	Set Value	Description
G.PLC -	5467	0~50	Send delay time (Initial Value : 10ms)
	rŸĿŌ	500~ 1000	Receive wait time (Initial Value : 1000ms)

4.2.5. Max Number of Connections

Max number of connections indicate number of SP590E connected to PLC - the value must be set according to

number of modules.

Group	Parameter	Set Value	Description
G.PLC	ก็ปีกอ	I~3 I	Set max connections (Initial Value : 1)

4.2.6. Register Type Setting

Sets register type. This parameter sets send / receive memory area of PLC.

Group Baramat	Parameter	Set Value	Description	
Gloup	Falametei		MITSUBISHI PLC	Other PLC
Б.Р.С г.Е.УР		0	D Register	
	r.Ł YP	1	W Register	D Desister (fived)
		2	R Register	D Register (lixed)
		3	ZR Register	

4.2.7. Start Address Setting

Sets start address of PLC memory area, 30 words are uniformly allocated to PLC area according start address setting.

Group	Parameter	Set Value	Description
G.PL C	5.Rdr	0~FFFF	Start Address Setting (Initial Value :03E8[1000])

When Start Address of Product is 0

When Start Address of Product is 100[0064]

SP500E(Slave) Start Address : Start Address (Master) + (SP500E Address - 1) * 30

4.2.8. Data Map Setting

Data Map Setting is composed of 'MASTER' setting that uses information by copying them from a master module and copying into a slave module, and 'LOCAL' setting that uses information in ST500E.

Group	Parameter	Set Value	Description
רחיר	I.PLC ARP.S	- <u>785</u> -7	MASTER Setting (Initial Value)
U.P.L.L		Lo[ī	LOCAL Setting

- If Data Map Setting is MASTER, the slave module receives send delay time, receive wait time, register type, start address and data map information from master module and enter the data into PLC memory area.
- Parameter information from MASTER can be checked in G.NPL Group.

Group	Parameter	Set Value	Description
	n.5 <u>4</u> E	-	Send delay time information
	nrŸŁ	-	Receive wait time information
	nrty	-	Register type information
	n.5Rd	-	Start address information
<u>G</u> nPL	no.0 l ~	-	Read area address information [13EA]
	no. 13		
	n 40 l		
	~	-	Write area address information[15EA]
	n <u>4</u> .15		

■ G.NPL Group is a read-only parameter.

Master Setting must be composed of the same product group (SP, ST, SD and SL) for normal operation.

LOCAL Setting

4.2.9. Memory Area Setting

- Sets 13 read-only parameters and 15 read/write parameters to be sent to PLC memory area.
- Users can built a data map by referring to the upload/download setting table and send data map information to PLC memory area.

Group	Parameter	Set Value	Description
G.PL C	r o.0 1 ~ r o. 13	I~200	Set read area address [13EA]
	ר <u>ש</u> ו ~ ר <u>ש</u> 15	I~ I50	Set write area address [15EA]

Example

Setting 161[PROC.TIME] of RO.01 in 151[NPV] will send PROC.TIME value to RO.01 area in PLC.

Parameter	Setting Range	Initial Value		
RO.01	OFF[Not Set], 1 ~ 200	151	NPV	
RO.02	OFF[Not Set], 1 ~ 200	152	NSP	
RO.03	OFF[Not Set], 1 ~ 200	153	TSP	
RO.04	OFF[Not Set], 1 ~ 200	154	MVOUT	
RO.05	OFF[Not Set], 1 ~ 200	155	HOUT	
RO.06	OFF[Not Set], 1 ~ 200	156	COUT	
RO.07	OFF[Not Set], 1 ~ 200	158	NOWSTS	
RO.08	OFF[Not Set], 1 ~ 200	159	ALSTS	
RO.09	OFF[Not Set], 1 ~ 200	160	DISTS	
RO.10	OFF[Not Set], 1 ~ 200	166	HBCD	
RO.11	OFF[Not Set], 1 ~ 200	OFF	-	
RO.12	OFF[Not Set], 1 ~ 200	OFF	-	
RO.13	OFF[Not Set], 1 ~ 200	OFF	-	
RW.01	OFF[Not Set], 1 ~ 150	5	F.KEY[Reset/P1/P2]	
RW.02	OFF[Not Set], 1 ~ 150	6	AT	
RW.03	OFF[Not Set], 1 ~ 150	16	Alarm Value 1	
RW.04	OFF[Not Set], 1 ~ 150	17	Alarm High Value 1	
RW.05	OFF[Not Set], 1 ~ 150	18	Alarm Low Value 1	
RW.06	OFF[Not Set], 1 ~ 150	19	Alarm Value 2	
RW.07	OFF[Not Set], 1 ~ 150	20	Alarm High Value 2	
RW.08	OFF[Not Set], 1 ~ 150	21	Alarm Low Value 2	
RW.09	OFF[Not Set], 1 ~ 150	28	HBCD	
RW.10	OFF[Not Set], 1 ~ 150	65	ALBS	
RW.11	OFF[Not Set], 1 ~ 150	0	-	
RW.12	OFF[Not Set], 1 ~ 150	0	-	
RW.13	OFF[Not Set], 1 ~ 150	0	-	
RW.14	OFF[Not Set], 1 ~ 150	0	-	
RW.15	OFF[Not Set], 1 ~ 150	0	-	

ST500E Data Map Initial Setting Chart

UPLOAD/DOWNLOAD Setting Table

Upload & Download Setting

Parameter		Set Value		Parameter	
A/M	D0105		39	2.1	D0522
H.OUT	D0106		40	2.D	D0523
C.OUT	D0107		41	2.MR	D0524
F.KEY[Reset/P1/P2]	D0121		46	RP2	D0529
AT	D0121	ting.	47	3.P	D0531
Alarm Value 1	D0406	d Sett	48	3.1	D0532
Alarm High Value 1	D0421	Inloa	49	3.D	D0533
Alarm Low Value 1	D0426	Dow	50	3.MR	D0534
Alarm Value 2	D0407	ad &	55	RHY	D0539
Alarm High Value 2	D0422	Uplc	56	4.P	D0541
Alarm Low Value 2	D0427		57	4.1	D0542
Alarm Value 3	D0408		58	4.D	D0543
Alarm High Value 3	D0423		64	RDV	D0549
Alarm Low Value 3	D0428		65	ALBS	D0621
Alarm Value 4	D0409		151	NPV	D0001
Alarm High Value 4	D0424		152	NSP	D0002
Alarm Low Value 4	D0429		153	TSP	D0003
HBCS	D0432		154	MVOUT	D0006
1.P	D0511		155	HOUT	D0007
1,1	D0512		156	COUT	D0008
1.D	D0513	0	157	PIDNO	D0009
1.MR	D0514	ettin	158	NOWSTS	D0010
RP1	D0519	oad S	159	ALSTS	D0014
2.P	D0521	ldU	160	DISTS	D0015
2.1	D0522		162	PTNO	D0025
RP1	D0519		163	SEGNO	D0026
2.P	D0521		164	RUNTIME	D0028
2.1	D0522		165	SEGTIME	D0029
RP1	D0519		166	HBCD	D0030
2.P	D0521		-	-	-

PLC Register Table

	ST500E Address	Parameter		
Basic	Start Address + (SP500E ADDRESS - 1) * 30 + 0	Trigger	READ/WRITE	
	Start Address + (SP500E ADDRESS - 1) * 30 + 0	Communication Status Flag (STS.F)	READ	
-	Start Address + (SP500E ADDRESS - 1) * 30 + 2	RO.01	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 3	RO.02	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 4	RO.03	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 5	RO.04	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 6	RO.05	READ	
R	Start Address + (SP500E ADDRESS - 1) * 30 + 7	RO.06	READ	
Ε Δ	Start Address + (SP500E ADDRESS - 1) * 30 + 8	RO.07	READ	
D	Start Address + (SP500E ADDRESS - 1) * 30 + 9	RO.08	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 10	RO.09	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 11	RO.10	READ	
-	Start Address + (SP500E ADDRESS - 1) * 30 + 12	RO.11	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 13	RO.12	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 14	RO.13	READ	
	Start Address + (SP500E ADDRESS - 1) * 30 + 15	RW.01	READ/WRITE	
	Start Address + (SP500E ADDRESS - 1) * 30 + 16	RW.02	READ/WRITE	
	Start Address + (SP500E ADDRESS - 1) * 30 + 17	RW.03	READ/WRITE	
P	Start Address + (SP500E ADDRESS - 1) * 30 + 18	RW.04	READ/WRITE	
E	Start Address + (SP500E ADDRESS - 1) * 30 + 19	RW.05	READ/WRITE	
А	Start Address + (SP500E ADDRESS - 1) * 30 + 20	RW.06	READ/WRITE	
D	Start Address + (SP500E ADDRESS - 1) * 30 + 21	RW.07	READ/WRITE	
& W	Start Address + (SP500E ADDRESS - 1) * 30 + 22	RW.08	READ/WRITE	
R	Start Address + (SP500E ADDRESS - 1) * 30 + 23	RW.09	READ/WRITE	
I T = E =	Start Address + (SP500E ADDRESS - 1) * 30 + 24	RW.10	READ/WRITE	
	Start Address + (SP500E ADDRESS - 1) * 30 + 25	RW.11	READ/WRITE	
	Start Address + (SP500E ADDRESS - 1) * 30 + 26	RW.12	READ/WRITE	
	Start Address + (SP500E ADDRESS - 1) * 30 + 27	RW.13	READ/WRITE	
	Start Address + (SP500E ADDRESS - 1) * 30 + 28	RW.14	READ/WRITE	
	Start Address + (SP500E ADDRESS - 1) * 30 + 29	RW.15	READ/WRITE	

4.3. Data Processing and Communication Status

Able to check communication status with PLC using parameters in BASIC area and read / write data using a trigger.

Parameter	Set Value	Description		
	0	Monitor	:	Reads READ area data
Trigger (TRG)	1	Setting	:	Writes data on ST500E
	2	Set Value Monitor	:	Reads READ&WRITE area data
Status Flag (STS.F)	0, 1	Displays communication status		

4.3.1. Communication Procedure with PLC

When the trigger is 0

① When the trigger is set at 0, it writes READ area (RO.01~RO.13) data in NOVA500E to PLC and reverses communication status flag (0->1, 1->0) and write to to PLC.

When the trigger is 1

① When the trigger is set at 1 in PLC, it writes data in READ&WRITE area (RW.01~RW.15) to ST500E.

② Sets triggers from 1 to 0 and reverses communication flag value (0->1, 1->0) and write in PLC.

It is important to check whether or not the READ & WRITE area is synchronized prior to writing set values as unsynchronized ST500E and PLC set values may influence current ST500E set values. When trigger is 2

① When the trigger is set at 2 in PLC, it writes data in READ&WRITE area (RW.01~RW.15) to SP500E.

② Sets triggers from 2 to 0 and reverses communication flag value (0->1, 1->0) and write in PLC.

Because READ&WRITE area is prior to synchronization at first communication with PLC, the user must carry out synchronization after setting trigger to 2 (Set value monitor).

4.4. Connection to OMRON PLC

4.4.1. Connection Diagram

Next is an example of composition for programless communication with OMRON SYSMAC CI1M CPU11.

4.4.2. Communication Wiring

■ Wire SP500E and CJ1W-SCU41-V1 communication modules as below.

4.4.3. SP500E Setting

- Sets communication parameters pertinent to SP500E Series and PLC for programless communication.
- Refer to 4. Communication Setting and set as below.
 - 1) Sets protocol and communication address in G.COM. Employ default settings for remaining parameters.

Set communication protocol according to PLC type by referring to 4.2.1 Protocol Setting. For communication address setting, set address of MASTER module to 1 and 2 for remaining module addresses.

Communication protocol setting(COM.P) : Set according to PLC type

- ► Transmission speed (BAUD) : 38400bps
- ▶ Parity bit(PRTY) : None
- ► Stop bit(S.BIT): 1
- ▶ Data length(D.LEN):8
- ► Communication address(ADDR):1

2) Set max number of connections in G.PLC. Employ default settings for remaining parameters.

Set max number of connections as the last communication address to the current SP500E Series and set data map setting as 'MASTER'.

- ► Send delay time(SW.TM) : 10(msec)
- ▶ Receive wait time (RW.TM) : 1000(msec)
- ► Max number of connection(MU.NO) : Number of connections by SP500E Series
- ► Register type(R.TYP):0
- ► Start address setting(S.ADR): 1000
- ► Data map setting(MAP.S) : MASTER

4.4.4. PLC Setting

Connecting to PLC

- 1 Connect PC and OMRON PLC and execute CX-Programmer
- ② From menu, select 'PLC ->Auto Online'
- ③ Upload after a normal connection to PLC

Communication setting of module

- (1) Select 'PLC -> Operating Mode -> Program' from menu
- ② Double click on 'l/OTable' on the 'Project' window
- 3 Double click on Main Rack on the 'PLC IO Table' window
- ④ Right click on Serial Communications Unit and select Softerware Switches

(5) Make communication setting from relevant port on Serial CommS Unit Software Switches window, (Refer to SP500E Setting)

It	tem	Set Value		
Communication Settings	Baud	38400	SP500E Default Value	
	Format	1, 8, 1, N	SP500E Default Value	
	Mode	Default(Host Link)	SP500E Default Value	

(6) Upon completion, select 'Options ->Transfer to PLC' on the Serial CommS Unit Software Switches window to save.

4.4.5. Data Monitoring and Setting

SP500E Data Monitoring

- ① Access PLC using CX-Programmer
- ② Double click on 'Memory' on 'Project' window
- ③ Select 'D' on 'PLC Memory' window and click on 'Monitor'
- ④ Check up to 30 words of data per product in relevant register area

Based upon default value of data map setting, the register area data are as follows.

ADDRESS.1	ADDRESS.2	ADDRESS.3	Parameter	Value
D1000	D1030	D1060	Trigger	0
D1001	D1031	D1061	Communication status flag	1, 0 repeat
D1002	D1032	D1062	NPV	-
D1003	D1033	D1063	NSP	-
D1004	D1034	D1064	TSP	-
D1005	D1035	D1065	MVOUT	-
D1006	D1036	D1066	HOUT	-
D1007	D1037	D1067	COUT	-
D1008	D1038	D1068	NOWSTS	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1011	D1041	D1071	HBCD	-
D1015	D1045	D1075	F.KEY[Reset/P1/P2]	-
D1016	D1046	D1076	AT	-
D1017	D1047	D1077	Alarm Value 1	-
D1018	D1048	D1078	Alarm High Value 1	-
D1019	D1049	D1079	Alarm Low Value 1	-
D1020	D1050	D1080	Alarm Value 2	-
D1021	D1051	D1081	Alarm High Value 2	-
D1022	D1052	D1082	Alarm Low Value 2	-
D1023	D1053	D1083	HBCD	-
D1024	D1054	D1084	ALBS	-

RO Area _____, RW Area _____
SP500E Set Value Monitoring

- ① Enter '2 (Read Set Value)' in the register relevant to Trigger Area (D1000)
- ② After the trigger is changed to 2' and data writing is complete in RW area, the trigger is changed to 0' and the process is complete
- ③ Check the values in the uploaded RW Area(D1015~D1029)

Changing AT(Alarm Type) through Writing SP500E Set Value

- ① Enter set value '1' in the register relevant to SP(D1014)
- ③ Enter '1 (Read Set Value)' in the register relevant to Trigger (D1000)
- (5) After the trigger is changed to '1' and writing from PLC to SP500E is complete, the trigger is changed to '0' and the process is complete.

4.5. Connection to MITSUBISHI PLC

4.5.1. Connection Diagram

Next is an example of composition for programless communication with MITSUBISHI Melsec Q Series.

4.5.2. Communication Wiring

■ Wire SP500E and QJ71C24N-R4 as below.

4.5.3. SP500E Setting

■ Refer to 4.4.3 SP500E Setting

4.5.4. PLC Setting

Connection to PLC

- ① Connect PC and Melsec Q Series CPU and execute GX-Works2
- ② Select 'Online -> Read from PLC' from menu
- 3 Select QCPU(Q mode) and dick on 'OK'
- 3 When 'Online Data Operation' window opens, click on 'Execute' to read data
- ⑤ After upload is complete, close the window

Communication setting of module

- 1 Double click on 'Intelligent Function Module' on 'Navigation' window
- 0 Double click on 'QJ71C24N-R4' module and then 'Switch Setting'
- ③ Set communication option parameters of channels connected to ST500E as shown below. (Refer to SP500E SETTING)

Item		Set \	/alue
	Operation setting	Independent	
	Data Bit	8	SP500E Default Value
	Parity Bit	None	SP500E Default Value
Transmission	Even/Odd Parity	None	
setting	Stop Bit	1	SP500E Default Value
	Sum check code	Exist	-
	Online Change	Enable	-
	Setting modifications	Enable	-
Communication rate setting		38400bps	SP500E Default Value
Communication protocol setting		MC protocol(format 4)	-
Station number setting(0-31)		0	

④ After setting is complete, select 'Online -> Write to PLC' from menu

(5) When 'Online Data Operation' window opens, select 'Intelligent Function Module' and check relevant items

(5) Complete setting by clicking on 'Execute'

4.5.5. Data Monitoring and Setting

SP500E Data Monitoring

- ① Access PLC using GS Works 2
- O Select 'Online -> Monitor -> Device Buffer Memory Batch' from menu
- 3 Enter 'D1000' in 'Device Name' on 'Device Buffer Memory Batch' window
- ④ Check up to 30 words of data per product in relevant register area

Based upon default value of data map setting, the register area data are as follows.

ADDRESS.1	ADDRESS.2	ADDRESS.3	Parameter	Value
D1000	D1030	D1060	Trigger	0
D1001	D1031	D1061	Communication status flag	1, 0 repeat
D1002	D1032	D1062	NPV	-
D1003	D1033	D1063	NSP	-
D1004	D1034	D1064	TSP	-
D1005	D1035	D1065	MVOUT	-
D1006	D1036	D1066	HOUT	-
D1007	D1037	D1067	COUT	-
D1008	D1038	D1068	NOWSTS	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1011	D1041	D1071	HBCD	-
D1015	D1045	D1075	F.KEY[Reset/P1/P2]	-
D1016	D1046	D1076	AT	-
D1017	D1047	D1077	Alarm Value 1	-
D1018	D1048	D1078	Alarm High Value 1	-
D1019	D1049	D1079	Alarm Low Value 1	-
D1020	D1050	D1080	Alarm Value 2	-
D1021	D1051	D1081	Alarm High Value 2	-
D1022	D1052	D1082	Alarm Low Value 2	-
D1023	D1053	D1083	HBCD	-
D1024	D1054	D1084	ALBS	-

RO Area , RW Area

SP500E Set Value Monitoring

- ① Enter '2 (Read Set Value)' in the register relevant to Trigger Area (D1000)
- ② After the trigger is changed to 2' and data writing is complete in RW area, the trigger is changed to 0' and the process is complete
- ③ Check the values in the uploaded RW Area(D1015~D1029)

Changing AT(Alarm Type) through Writing SP500E Set Value

- ① Enter set value '1' in the register relevant to SP(D1014)
- ③ Enter '1 (Read Set Value)' in the register relevant to Trigger (D1000)
- (5) After the trigger is changed to '1' and writing from PLC to SP500E is complete, the trigger is changed to '0' and the process is complete.

SP500E

RTX+

RTX-

Shielded cable

4.6. Connection to LG PLC

4.6.1. Connection Diagram

Next is an example of composition for programless communication with LS PLC(XBM-DR16S).

4.6.2. Communication Wiring

TXD

RXD RS-232

Shielded cable

■ Wire SP500E and XBM-DR16S communication modules as below.

4.6.3. SP500E Setting

Refer to 4.4.3 SP500E Setting

4.6.4. PLC Setting

Connection to PLC

- 1 Connect PC and LS PLC and execute XG5000
- 2 Select 'Project -> Open from PLC' from menu
- 3 Set parameters according to connection method and click on 'Access'

Communication setting of module

- ① From 'XG5000 Project' window, select 'Network Composition -> Basic Network ->NewPLC[B0S0 Built-in Cnet]'
- 2 Set relevant channels in Basic Setting window as below

Item		Set Valu	ue
	Transmission speed	38400	SP500E Default Value
Access Setting	Data bit	8	SP500E Default Value
	Stop bit	1	SP500E Default Value
	Parity bit	NONE	SP500E Default Value

④ After setting is complete, select 'Online -> Write to PLC' from menu

(5) Complete setting by clicking on 'Confirm' on Write' window and changing PLC setting to Writing.

4.6.5. Data Monitoring and Setting

SP500E Data Monitoring

- ① Access PLC by using GX5000
- ② Select 'Monitor -> Device Monitor' from menu
- (4) Select 'D' area on 'Device Monitor' window and check relevant register

Based upon default value of data map setting, the register area data are as follows.

ADDRESS.1	ADDRESS.2	ADDRESS.3	Parameter	Value
D1000	D1030	D1060	Trigger	0
D1001	D1031	D1061	Communication status flag	1, 0 repeat
D1002	D1032	D1062	NPV	-
D1003	D1033	D1063	NSP	-
D1004	D1034	D1064	TSP	-
D1005	D1035	D1065	MVOUT	-
D1006	D1036	D1066	HOUT	-
D1007	D1037	D1067	COUT	-
D1008	D1038	D1068	NOWSTS	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1011	D1041	D1071	HBCD	-
D1015	D1045	D1075	F.KEY[Reset/P1/P2]	-
D1016	D1046	D1076	AT	-
D1017	D1047	D1077	Alarm Value 1	-
D1018	D1048	D1078	Alarm High Value 1	-
D1019	D1049	D1079	Alarm Low Value 1	-
D1020	D1050	D1080	Alarm Value 2	-
D1021	D1051	D1081	Alarm High Value 2	-
D1022	D1052	D1082	Alarm Low Value 2	-
D1023	D1053	D1083	HBCD	-
D1024	D1054	D1084	ALBS	-

RO Area , RW Area

SP500E Set Value Monitoring

- ① Enter '2 (Read Set Value)' in the register relevant to Trigger Area (D1000)
- ② After the trigger is changed to 2' and data writing is complete in RW area, the trigger is changed to 0' and the process is complete
- ③ Check the values in the uploaded RW Area(D1015~D1029)

Changing AT(Alarm Type) through Writing SP500E Set Value

- ① Enter set value '1' in the register relevant to SP(D1014)
- ③ Enter '1 (Read Set Value)' in the register relevant to Trigger (D1000)
- (5) After the trigger is changed to '1' and writing from PLC to SP500E is complete, the trigger is changed to '0' and the process is complete.

4.7. Connection to YOKOGAWA PLC

4.7.1. Connection Diagram

Next is an example of composition for programless communication with YOKOGAWA PLC.

4.7.2. Communication Wiring

■ Wire SP500E and LC11-2F as below.

4.7.3. SP500E Setting

Refer to 4.4.3 SP500E Setting

Data area of YOKOGAWA PLC starts at '1'. Make sure not to set start address of SP500E at '0'.

4.7.4. PLC Setting

Setting communication module

Open right cover of LC11-2F and set up as below.

Item		Set V	alue
SW1		38.4kbps(9)	SP500E Default Value
	Character Length	8bit(ON)	-
SW2	Check Sum	YES(ON)	-
	Terminator	YES(ON)	-

4.7.5. Data Monitoring and Setting

ST500E Data Monitoring

- ① Access PLC using WideField2
- ② Select 'Online -> Device Monitor -> D Data Register' and check relevant register
- Based upon default value of data map setting, the register area data are as follows.

RO Area

ADDRESS.1	ADDRESS,2	ADDRESS.3	파라메터	Value
D1000	D1030	D1060	Trigger	0
D1001	D1031	D1061	Communication status flag	1, 0 repeat
D1002	D1032	D1062	NPV	-
D1003	D1033	D1063	NSP	-
D1004	D1034	D1064	TSP	-
D1005	D1035	D1065	MVOUT	-
D1006	D1036	D1066	HOUT	-
D1007	D1037	D1067	COUT	-
D1008	D1038	D1068	NOWSTS	-
D1009	D1039	D1069	ALSTS	-
D1010	D1040	D1070	DISTS	-
D1011	D1041	D1071	HBCD	-

ADDRESS.1	ADDRESS,2	ADDRESS.3	Parameter	Value
D1014	D1044	D1074	F.KEY[Reset/P1/P2]	-
D1015	D1045	D1075	AT	-
D1016	D1046	D1076	Alarm Value 1	-
D1017	D1047	D1077	Alarm High Value 1	-
D1018	D1048	D1078	Alarm Low Value 1	-
D1019	D1049	D1079	Alarm Value 2	-
D1020	D1050	D1080	Alarm High Value 2	-
D1021	D1051	D1081	Alarm Low Value 2	-
D1022	D1052	D1082	HBCD	-
D1023	D1053	D1083	ALBS	-

RW 영역

SP500E Set Value Monitoring

- ① Enter '2 (Read Set Value)' in the register relevant to Trigger Area (D1000)
- ② After the trigger is changed to '2' and data writing is complete in RW area, the trigger is changed to '0' and the process is complete
- ③ Check the values in the uploaded RW Area(D1015~D1029)

Changing AT(Alarm Type) through Writing SP500E Set Value

- 1 Enter set value '1' in the register relevant to SP(D1014)
- ③ Enter '1 (Read Set Value)' in the register relevant to Trigger (D1000)
- (5) After the trigger is changed to '1' and writing from PLC to SP500E is complete, the trigger is changed to '0' and the process is complete.

4.8. Connection to KEYENCE PLC

4.8.1. Connection Diagram

4.8.2. Communication Wiring

Wire SP500E and KV-N11L Cassette as below.

4.8.3. SP500E Setting

■ Refer to 4.4.3 SP500E Setting

4.8.4. PLC Setting

Communication module setting

- 1 Connect PC and KV-N14DT and execute KV Studio
- O Select 'Monitor/Simulator -> Setup communication -> Setup Communication' from menu
- $(\ensuremath{\mathfrak{I}})$ Select USB as communication method and click on 'OK'
- ③ Select 'Monitor/Simulator -> Read from PLC' from menu and click on 'Execute' on Read PLC window
- ④ After reading PLC, double click on 'Unit configuration -> KV-N14' on Workspace window
- (5) Set 'Exetension cassette(port 1)' items in Unit Editor window as below. Click on 'Apply' and close window.

Item	Set \	/alue
Operation Mode	Modbus slave mode	-
Interface	RS-485(2 Wire - type)	-
Baud rate	38400	SP500E Default Value
Stop bit	1	SP500E Default Value
Parity	NONE	SP500E Default Value
Modbus slave station No. setting method	Unit editor	-
Modbus slave station No.	1	-

⑥ Select 'Monitor/Simulator -> Transfer to PLC' from menu and select 'Execute' Transfer PLC window.

4.8.5. Data Monitoring and Setting

SP500E Data Monitoring

- ① Access PLC using KV Studio
- 2 Select 'Monitor/Simulator -> Monitor Mode' from menu
- ④ Select 'Monitor/Simulator -> Batch monitor window' from menu and check data in Batch monitor window.

Based upon default value of data map setting, the register area data are as follows.

ADDRESS.1	ADDRESS.2	ADDRESS.3	Parameter	Value
DM1000	DM1030	DM1060	Trigger	0
DM1001	DM1031	DM1061	Communication status flag	1, 0 repeat
DM1002	DM1032	DM1062	NPV	-
DM1003	DM1033	DM1063	NSP	-
DM1004	DM1034	DM1064	TSP	-
DM1005	DM1035	DM1065	MVOUT	-
DM1006	DM1036	DM1066	HOUT	-
DM1007	DM1037	DM1067	COUT	-
DM1008	DM1038	DM1068	NOWSTS	-
DM1009	DM1039	DM1069	ALSTS	-
DM1010	DM1040	DM1070	DISTS	-
DM1011	DM1041	DM1071	HBCD	-
DM1014	DM1044	DM1074	F.KEY[Reset/P1/P2]	-
DM1015	DM1045	DM1075	AT	-
DM1016	DM1046	DM1076	Alarm Value 1	-
DM1017	DM1047	DM1077	Alarm High Value 1	-
DM1018	DM1048	DM1078	Alarm Low Value 1	-
DM1019	DM1049	DM1079	Alarm Value 2	-
DM1020	DM1050	DM1080	Alarm High Value 2	-
DM1021	DM1051	DM1081	Alarm Low Value 2	-
DM1022	DM1052	DM1082	HBCD	-
DM1023	DM1053	DM1083	ALBS	-

RO Area _____, RW Area _____

SP500E Set Value Monitoring

- ① Enter '2 (Read Set Value)' in the register relevant to Trigger Area (DM1000)
- ② After the trigger is changed to '2' and data writing is complete in RW area, the trigger is changed to '0' and the process is complete
- ③ Check the values in the uploaded RW Area(DM1015~DM1029)

Changing AT(Alarm Type) through Writing SP500E Set Value

- ① Enter set value '1' in the register relevant to SP(DM1014)
- ③ Enter '1 (Read Set Value)' in the register relevant to Trigger (DM1000)
- (5) After the trigger is changed to '1' and writing from PLC to SP500E is complete, the trigger is changed to '0' and the process is complete.

4.9. Connection to SIEMENS PLC

4.9.1. Connection Diagram

Next is an example of composition for programless communication with SIEMENS PLC.

4.9.2. Communication Wiring

■ Wire SP500E and CM1241 as below.

4.9.3. SP500E Setting

Refer to 4.4.3 SP500E Setting

4.9.4. PLC Setting

CM1241 (RS-485) Module Setting

① Create Slave PLC Project

② Set Port Configuration of CM1241 (RS-485) from Device Configuration in Slave PLC.

ltem	Set Value
Transmission rate	9.6kbps
Parity	Even parity
Data bits	8bit per character
Stop bits	1
Wait time	1

③ Check Hardware Identifier of CM1241.

Slave PLC Sample Logic Programming

① Create Global DB from sending and receiving data and enter parameters as below.

Item	Set Value
Name	MB_HOLD_REG
Data type	Struct
Offset	0.0
Retain	Checked
Accessible from HMI	Checked
Visible in HMI	Checked
Set point	Unchecked

② Call MB_COMM_LOAD from OB1 and enter parameters as below.

Item	Set Value
REQ	first scan(Address : %M1.0)
PORT	296(Check CM1241 Hardware Identifier)
BAUD	38400
PARITY	0
MB_DB	MB_SLAVE_DB
DONE	Tag_1(Address: %M200.0)
ERROR	Tag_2(Address: %M200.1)
STATUS	Tag_3(Address: %MW202)

ltem	Set Value	
MB_ADDR	1	
MB_HOLD_REG	P#DB3.DBX0.0WORD2000	
NDR	-	
DR	0	
ERROR	MB_SLAVE_DB	
STATUS	Tag_4(Address: %MW203)	

③ Call MB_SLAVE from OB1 and enter parameters as below.

4.9.5. Data Monitoring and Setting

SP500E Data Monitoring

- ① Connect to PLC using TIA Portal V13.
- ② 30 words are allocated in line with the order of ST500E connected to MB_HOLD_REG in MB_SLAVE_DB.
- Based upon default value of data map setting, the register area data are as follows.

ADDRESS.1	ADDRESS,2	ADDRESS.3	Parameter	Value
DB1000	DB1030	DB1060	Trigger	0
DB1001	DB1031	DB1061	Communication status flag	1, 0 repeat
DB1002	DB1032	DB1062	NPV	-
DB1003	DB1033	DB1063	NSP	-
DB1004	DB1034	DB1064	TSP	-
DB1005	DB1035	DB1065	MVOUT	-
DB1006	DB1036	DB1066	HOUT	-
DB1007	DB1037	DB1067	COUT	-
DB1008	DB1038	DB1068	NOWSTS	-
DB1009	DB1039	DB1069	ALSTS	-
DB1010	DB1040	DB1070	DISTS	-
DB1011	DB1041	DB1071	HBCD	-
DB1014	DB1044	DB1074	R-S[RUN/STOP]	-
DB1015	DB1045	DB1075	AT	-
DB1016	DB1046	DB1076	Alarm Value 1	-
DB1017	DB1047	DB1077	Alarm High Value 1	-
DB1018	DB1048	DB1078	Alarm Low Value 1	-
DB1019	DB1049	DB1079	Alarm Value 2	-
DB1020	DB1050	DB1080	Alarm High Value 2	-
DB1021	DB1051	DB1081	Alarm Low Value 2	-
DB1022	DB1052	DB1082	HBCD	-
DB1023	DB1053	DB1083	ALBS	-

RO Area _____, RW Area _____

SP500E Set Value Monitoring

- ① Enter '2 (Read Set Value)' in the register relevant to Trigger Area (DB1000)
- ② After the trigger is changed to 2' and data writing is complete in RW area, the trigger is changed to 0' and the process is complete
- ③ Check the values in the uploaded RW Area(DB1015~DB1029)

Changing AT(Alarm Type) through Writing SP500E Set Value

- ① Enter set value '1' in the register relevant to SP(DB1014)
- ③ Enter '1 (Read Set Value)' in the register relevant to Trigger (DB1000)
- (5) After the trigger is changed to '1' and writing from PLC to SP500E is complete, the trigger is changed to '0' and the process is complete.

5. Other Communication Functions

5.1. SYNC Communication

SYNC Communication sends operation information (Run/Stop, SP) of master control unit to up to 31 slave units and sync operating conditions.

5.1.1 SYNC-Master

- Master Setting
 - Change COM.P to SYNC-Master (SYN.M) to set as SYNC-Master.
- Models that can be set as Master
 - They are SP590E, SP580E, SP570E, SP540E, ST590E, ST580E, ST570E and ST540E.

5.1.2 SYNC-Slave

- Slave Setting
 - Change COM, P to SYNC-Slave(SYN, S) to set as SYNC-Slave..
 - Change SP type (SPSL) to Remote Set Point(RSP).
- Models that can be set as Slave
 - They are ST590E, ST580E, ST570E and ST540E.

5.2. Broadcast Mode

Broadcast Mode sends the same command to all ST500Es connected to higher communication unit to carry out the same task.

Broadcast Mode Communication Method

- To communicate with Broadcast Mode, set Frame Address to '00' and send

Only applies to Write-related commands.

Broadcast Mode Usable Protocols

- Only applicable to the following protocols : PC-LINK, PC-LINK+SUM, MODBUS-RTU and MODBUS-ASCII

5.3. Service Port

- Service port is a communication port for setting parameters and updating firmwares.
- You can check Micro-USB port by removing the 'Service Port' sticker as shown below.

Service Port Specifications

Parameter	Set Value
Protocol	PCC1(PC-LINK+SUM)
Transmission speed	38400bps
Stop bit	1
Parity bit	NONE
Data length	8
Communication address	1

The Service Port requires a Micro-USB cable and a converter that are sold separately.

6. Register Guide

- D-Register is a group of data that can check the all status of SP500E through communication.
- They are in groups of 100 according to their contents as the following.

D-Register Range	Group Name	Description	Read	Write
D0001~D0099	PROCESS	Basic operation info display D-Register group	0	۲
D0100~D0299	FUNCTION	Operation setting D-Register group	0	0
D0300~D0399	SIGNAL/TIMER	Signal/timer setting D-Register group	0	0
D0400~D0499	ALARM	Alarm setting D-Register group	0	0
D0500~D0599	PID	PID setting D-Register group	0	0
D0600~D0699	IN/OUT	Input/control & trans output setting D-Register group	0	Δ
D0700~D0799	PLC/NPL	PLC setting D-Register group	0	Δ
D1000~D1099	PT INFO	Program operation infomation setting D-Register group	0	0
D1100~D1299	PT1, PT2	Program pattern setting D-Register group	0	0

 $\cdot \bigcirc$: Able to read or write in all parameters within applicable range.

 $\cdot \bigtriangleup$: Able to partially read or write within applicable range.

 \cdot \circledast : Unable to write in all parameters within applicable range.

6.1. PROCESS

PROCESS Group stores basic data generated during operation. Of the data includes Bit Map which displays various states in bit as the following.

Status Information D-Register

D-Reg.	Symbol	Description
D0001	NPV	Current measured value
D0002	NSP	Current set value
D0003	TSP	Target value
D0006	MVOUT	Control output quantity
D0007	H.OUT	Heater output quantity
D0008	C.OUT	Cooler output quantity
D0009	PID.NO	Currently applied PID number
D0010	NOW.STS	Operation status information
D0014	ALM.STS	Alarm information
D0015	DI.STS	DI information
D0017	SIG.STS	Signal information
D0019	ERROR	Error information
D0021	VVP	[Position proportional control] Current valve position
D0025	PT.NO	Current operation pattern numnber
D0026	seg.no	Current operation segment numnber
D0027	END.SEG.NO	End segment number of current operation pattern
D0028	RUN TIME	Operation time of current segment
D0029	SET TIME	Set time of current segment
D0030	HB.CD	Heater current value
D0031	LINK CODE	Pattern end operation
D0032	RPT	Segment repeat count
D0033	RST	Repeat start segment number
D0034	REN	Repeat end segment number
D0035	WAIT TIME	Wait Function Time

ріт	NOW STATUS	ALARM STATUS	DI STATUS	SIGNAL STATUS	ERROR STATUS
ы	D0010	D0014	D0015	D0017	D0019
0		ALM1	DI1	IS1	SYS.ERR
1		ALM2	DI2	IS2	
2		ALM3		TS	
3		ALM4			
4	RESET	EVENT1			AD.ERR
5	PT1	EVENT2			
6	PT2	EVENT3(Option)			
7	HOLD	EVENT4(Option)			
8	WAIT	HBA		UP	+OVER
9		LBA		DOWN	-OVER
10		TIMER1		PTEND	S.OPN
11		TIMER2			V.OPEN1
12	AT				V.OPEN2
13					
14					
15					

Status Information Register Bit Map Information

6.2. FUNCTION GROUP

D-Reg.	Symbol	Description
D0111	RST/P1/P2	Set operation status(1: RESET, 2: P1 RUN, 3: P2 RUN)
D0112	HOLD	HOLD Functional operation
D0113	STEP	STEP Functional operation
D0116	PWR.M	Set operation after blackout
D0121	AT	Set auto tuning operation
D0133	PE-TM	Set operating time
D0134	ON/OFF	Set ON/OFF control
D0135, D0136	US1, US2	User screen registration 1, 2
D0137	LOCK	Set key lock
D0138	DI.SL	Set external contact input
D0139, D0140	DSP.H, DSP.L	Set upper/lower limits of sensor input values
D0205	HOLD_SP	Set HOLD SP
D0206	HOLD_TM	Set HOLD time

FUNCTION Group is composed of D-Registers pertinent to operation and function setting.

6.3. SIGNAL/TIMER GROUP

SIGNAL Group is composed of D-Registers for setting Inner Signal.

D-Reg.	Symbol	Description
D0301, D0306	1.IST, 2.IST	Set type of Inner Signal 1, 2
D0302, D0307	1.ISB, 2.ISB	Set direction of Inner Signal 1, 2
D0303, D0308	1.SIH, 2.SIH	Set upper limit of Inner Signal 1, 2
D0304, D0309	1.ISL, 2.ISL	Set lower limit of Inner Signal 1, 2
D0305, D0310	1.ISD, 2.ISD	Set delay time of Inner Signal 1, 2
D0311, D0315	1.TM.S, 2.TM.S	Set source of Timer 1, 2
D0312, D0316	1.TM.T, 2.TM.T	Set type of Timer 1, 2
D0313, D0317	1.TM.1, 2.TM.1	Set Time 1 for Timer 1, 2
D0314, D0318	1.TM.2, 2.TM.2	Set Time 2 for Timer 1, 2
D0319, D0320	1.TM.U, 2.TM.U	Set time unit for Timer 1, 2

6.4. ALARM GROUP

D-Reg.	Symbol	Description
D0401~D0404	ALT1 ~ ALT4	Set types of Alarm 1~4
D0406~D0409	AL1 ~ AL4	Set alarm values of Alarm 1~4
D0411~D0414	A1.DB ~ A4.DB	Set dead bands of Alarm 1~4
D0416~D0419	A1.DY ~ A4.DY	Set delay times of Alarm 1~4
D0421~D0424	A1.H ~ A4.H	Set upper deviation limit for Alarm 1~4
D0426~D0429	A1.L ~ A4.L	Set lower deviation limit for Alarm 1~4
D0430	SK.DV	Set alarm deviation for maintenance section
D0432	HB.CS	Set set value for heater break alarm
D0433	HB.DB	Set dead band of heater break alarm
D0434	PWR.F	Set power frequency of heater break alarm
D0435	CT.R	Set sensor current step-up ratio for heater break alarm
D0436	LBA.U	Set use of loop break alarm
D0437	LBA.D	Set dead band of loop break alarm
D0438	LBA.T	Set time for loop break alarm
D0440	AL1.SPH	Alarm1 set high deviation
D0441	AL2.SPH	Alarm2 set high deviation
D0442	AL3.SPH	Alarm3 set high deviation
D0443	AL4.SPH	Alarm4 set high deviation
D0445	AL1.SPL	Alarm1 set low deviation
D0446	AL2.SPL	Alarm2 set low deviation
D0447	AL3.SPL	Alarm3 set low deviation
D0448	AL4.SPL	Alarm4 set low deviation
D0450	B.GRP	Set bar graph type(0:MV, 1:CUR)
D0451	HB.BH	Set heater break graph high
D0452	HB.BL	Set heater break graph low
D0454~D0547	AL1.MODE~AL4.MODE	Set Alarm mode 1~4(0:ALWA, 1:RUN)
D0459~D0462	VAL.1.P~VAL4.P	[Position proportional control] Set valve alarm value 1~4
D0464~D0467	VAL1.DB~VAL4.DB	[Position proportional control] Set valve alarm dead band 1~4

ALARM Group is composed of D-Registers for setting alarms.

6.5. PID GROUP

PID Group is com	posed of D-Registers for PI) settina.
	posed of D negisters for the	Julia Scilling.

D-Reg.	Symbol	Description
D0501	ARW	Set deviation to prevent overload
D0502	FUZZY	Set use of FUZZY function
D0503	C.MOD	Set operating mode under PID control
D0511	1. P	Set proportional constant for PID1
D0512	1.1	Set intergration time for PID1
D0513	1. D	Set derivative time for PID1
D0514	1. MR	Manually set integration time for PID1
D0541	4. P	Set proportional constant for PID4
D0542	4. I	Set intergration time for PID4
D0543	4. D	Set derivative time for PID4
D0544	4. MR	Manually set integration time for PID4
D0519	1. RP	Set PID1 section
D0529	2. RP	Set PID2 section
D0539	RP.HY	Set hysteresis when selected PID Group in PID
D0549	RDV	Set deviation of PID

6.6. IN/OUT GROUP

D-Reg.	Symbol	Description
D0601	IN-T	Set sensor type
D0602	IN-U	Set sensor unit
D0603, D0604	IN.RH, IN.RL	Set upper/lower limits of input range
D0605	IN.DP	Set decimal place
D0606, D0607	IN.SH, IN.SL	Set upper/lower limits of input scale
D0608	IN.FL	Set measurement value filter
D0609	B.SL	Select Burn-Out
D0610	R.SL	Select reference contact conpensation function
D0611~D0613	BS.P1 ~ BS.P3	Set piece bias 1~3 to set bias values
D0615~D0619	BSO~BS4	Set piece bias 0~4 to set bias ranges
D0621	AL.BS	Set offset for all bias
D0622	D.FL	Select filter function for measured values
D0624 ~ D0625	OUT1, OUT2	Set OUT1, OUT2 operation
D0627 ~ D0630	EV1 ~ EV4	Set output operation for EVENT 1~4
D0631, D0633	HEAT1, HEAT2	Set output type for OUT1, 2(Heating)
D0632, D0634	COOL1, COOL2	Set output type for OUT1, 2(Cooling)
D0637	0.ACT	Set control ouput operation (Forward / Reverse)
D0638	CT	Set output cycle
D0639	CTc	Set cooler output cycle
D0641, D0642	OH, OL	Set upper/lower limits for control output
D0644	HYS	Set hysteresis during ON/OFF control output
D0646	PO	Set emergency ouput value
D0647	PO _c	Set output value during cooling emergency
D0648, D0649	HYS.H, HYS.L	Set hysteresis upper/lower temp range under ON-OFF control
D0651	RET.T	Set transmission output type
D0652, D0653	RET.H, RET.L	Set transmission output upper/lower limits
D0655	OPR	Set output process rate
D0657	O.LED	Set MV OUT lamp operation
D0684	V.CT	[Position proportional control] Set sampling time during valve output
D0685	V.TT	[Position proportional control] Set valve travel time during valve output
D0686	V.HYS	[Position proportional control] Set hysteresis during valve output
D0687	V.DB	[Position proportional control] Set dead band during valve output
D0688	V.PDB	[Position proportional control] Set PV dead band
D0690	V.CMD	[Position proportional control] Set Valve control mode (0:FB C_ 1:FB VC_ 2:VRT C)
D0691	V,A/M	[Position proportional control] Set valve auto/man(0:AUTO. 1:MAN)
D0692	V.CAL	[Position proportional control] Set valve auto calibration(0:OFF, 1:ON)

■ IN/OUT Group is composed of D-Register for setting input and control output.

6.7. COMM GROUP

COMM Group is composed of D-Registers for setting communication and checking current set values.

D-Reg.	Symbol	Description			
D0661	COM.P	Set communication protocol			
D0662	BAUD	Set communication speed			
D0663	PRTY	Set parity bit			
D0664	S.BIT	Set stop bit			
D0665	D.LEN	Set data length			
D0666	ADDR	Set communication address			
D0667	RP.TM	Set response time			
D0668	RBS	Set value added to SLAVE during cooperative operation			
D0673	COM.P	Read communication protocol			
D0674	BAUD	Read communication speed			
D0675	PRTY	Read parity bit			
D0676	S.BIT	Read stop bit			
D0677	D.LEN	Read data length			
D0678	ADDR	Read communication address			
D0679	RP.TM	Read response time			

6.8. PLC GROUP

PLC Group is composed of D-Register to set programless communication.

D-Reg.	Symbol	Description			
D0710	SW.TM	Set send delay time			
D0711	RW.TM	Set receive wait time			
D0712	MU.NO	Set max number of connection			
D0713	R.TYP	Set register type			
D0714	S.ADR	Set start address			
D0715	MAP.S	Set Data map			
D0716~D0728	RO.01~RO.13	Set read area address 1 ~13			
D0729~D0743	RW.01~RW.15	Set read / write area address 1 ~15			

6.9. NPL GROUP

NPL Group is composed of D-Register that can check the current set value used during Programless Communication

D-Reg.	Signs	Description			
D0751	N.SWT	Send delay time			
D0752	N.RWT	receive waiting time			
D0754	N.RTY	Register type			
D0755	N,SAD	Start address			
D0757~D0769	N.001~N.013	Read area address 1 ~ 13			
D0770~D0784	N.W01~N.W15	Read/write area address 1~15			

6.11. PT INFO GROUP

PT INFO Group is composed of D-Register for setting program pattern information.

D-Reg.	Signs	Description					
D1001	TMU	Set time unit in pattern					
D1002	STC	Set run start condition					
D1003	W.ZON	Set wait function range					
D1004	W.TM	Set wait function time					

6.12. PT1/PT2 GROUP

PT1/PT2 Group is composed of D-Register for program pattern

D-Reg.	Signs	Description				
D1101	1.LC	[Pattern 1] Set pattern end operation				
D1102	1.SSP	[Pattern 1] Set run starting sp				
D1104	1.SP1	[Pattern 1] Set tartger set point in segment 1				
D1105	1.TM1	[Pattern 1] Set running time of segment 1				
D1106	1.TS1	[Pattern 1] Set time signal in segment 1				
D1146	1.SPF	[Pattern 1] Set tartger set point in segment 15				
D1147	1.TMF	[Pattern 1] Set running time of segment 15				
D1148	1.TSF	[Pattern 1] Set time signal in segment 15				
D1151	1.RPT	[Pattern 1] Set repeat count of segment				
D1152	1.RST	[Pattern 1] Set repeat of start segment				
D1153	1.REN	[Pattern 1] Set repeat of end segment				
D1201	2.LC	[Pattern 2] Set pattern end operation				
D1202	2.SSP	[Pattern 2] Set run starting sp				
D1204	2.SP1	[Pattern 2] Set tartger set point in segment 1				
D1205	2.TM1	[Pattern 2] Set running time of segment 1				
D1206	2.TS1	[Pattern 2] Set time signal in segment 1				
D1246	2.SPF	[Pattern 2] Set tartger set point in segment 15				
D1247	2.TMF	[Pattern 2] Set running time of segment 15				
D1248	2.TSF	[Pattern 2] Set time signal in segment 15				
D1251	2.RPT	[Pattern 2] Set repeat count of segment				
D1252	2.RST	[Pattern 2] Set repeat of start segment				
D1253	2.REN	[Pattern 2] Set repeat of end segment				

6.13. D-Register Table

D-Register D0000~D0700

D Ney 0 100 200 300 400 500 600 700 0 NPV 1 1.IST ALT1 ARW IN-T 2 NSP 1.IST ALT2 FUZZY IN-U IN-T 3 TSP 1.ISL ALT2 FUZZY IN-U IN-T 4 ISL ALT4 IN-D IN-RH IN-T IN-T 4 ISL ALT4 IN-RH IN-SH IN-T IN-SH 5 SP.SL HOLD_SP ISD IN-T IN-SH IN-SH 6 MVOUT HOLD_TM 2.IST AL1 IN-SH IN-SH 7 H.OUT 2.IST AL1 BS.PI RW-TM 11 RST/P1/P2 1.TM-S ALDB 1.P BS.PI RW-TM 12 HOLD 1.TM-S ALDB 1.D BS.PI RW-TM 13 STEP 1.TM-S ALDB 1.D B	D-Pog	PROCESS	FUNCTION	SET POINT	SIGNAL	ALARM	PID	IN/OUT	PLC
0 Ist Ist ALTI ARW IN-T 1 NSP 1158 ALT2 FUZZY IN-T 3 TSP 1158 ALT2 FUZZY IN-T 4 115L ALT4 IN-T IN-T 5 SP.SL HOLD_SP 115D IN-D IN-D 6 MYOUT HOLD_TM 2.1ST AL1 IN-SL 7 H-OUT 2.1SH AL3 IN-FL 9 9 PID-RO 2.1SH AL3 IN-FL 9 10 NOW STS 2.1SD RSL RSL SWTM 11 RST/P1/P2 1.1TM.5 ALDB 1.P BS-P RVTM 12 HOLD 1.TM.1 A3.DB 1.D BS-P3 RTPE 14 ALM.STS 2.TM.5 ALDB 1.M SDE RO.02 16 PWR.M 2.TM.1 ALDP BS3 RO.03 17 SIG ST	D-Rey.	0	100	200	300	400	500	600	700
1 NPV 11ST ALT1 ARW IN-T 2 NSP 11SB ALT2 FUZ2Y IN-U 3 TSP 11SB ALT3 C.MO IN.RH 4 11SB ALT3 C.MO IN.RH 4 11SL ALT4 IN.D IN.D 5 S.P.SL HOLD_TM 2.IST AL1 IN.SH 7 H.OUT 2.ISE AL2 IN.SL IN.SH 7 H.OUT 2.ISL AL4 9.SL SWTM 9 PID.NO 2.ISL AL4 9.SL SWTM 11 RST/P1/P2 1.TM.S ALDB 1.P BS.P1 RW.TM 12 HOLD 1.TM.T A2.DB 1.1 BS.P3 R.TYPE 14 ALM.STS 1.TM.2 A4.DB 1.D BS.P3 R.TYPE 14 ALM.STS 2.TM.1 A3.DY BS1 RO.03 16 PWRM	0								1
2 NSP 1158 AIT2 FUZ2Y IN-U 3 TSP 115H AIT3 C.MD IN.RH 4 115L AIT4 IN.RL IN.RL 5 SP.SL HOLD_SP 115D IN.RL IN.RL 6 MVOUT HOLD_TM 215T AI.1 IN.SL 7 H.OUT 215T AI.1 IN.SL IN.SL 8 C.OUT 215L AI.4 B.SL IN.SL 9 PIDNO. 215L AI.4 B.SL MUNO 11 RST/P1/P2 1.TM.S AI.DB 1.P BS.P1 RWTM 12 HOLD 1.TM.1 A3.DB 1.D BS.P2 MUNO 13 STEP 1.TM.1 A3.DB 1.D BS1 R0.01 14 ALMSTS 1.TM.1 A3.DP BS1 R0.02 INAP 16 PWR.M 2.TM.1 A1.DY BS2 R0.02 <tr< td=""><td>1</td><td>NPV</td><td></td><td></td><td>1.IST</td><td>ALT1</td><td>ARW</td><td>IN-T</td><td></td></tr<>	1	NPV			1.IST	ALT1	ARW	IN-T	
3 TSP 115H ALT3 C.MD IN.RH 4 115L ALT4 IN.RH IN.RH 5 SP.SL HOLD_SP 115D IN.PP 6 MVOUT HOLD_TM 215B AL1 IN.SH 7 HOUT 21SH AL3 IN.FL 9 PDNO. 21SL AL4 BSL 10 NWSTS 21SD R.SL SWTM 11 RST/P1/P2 1.TM.S AL0B 1.P BSP1 RWTM 12 HOLD 1.TM.T A2.DB 1.1 BSP2 MUNO 13 STEP 1.TM.T A2.DB 1.MR SADR 14 ALMSTS 2.TM.T A1.DY BS0 MAPS 16 PWR M 2.TM.T A1.DY BS2 R0.04 20 2.TM.U A3.DY BS4 R0.04 R0.04 21 VVP AT A1.TH 2.LM.C AL1.H	2	NSP			1.ISB	ALT2	FUZZY	IN-U	
4 11SL ALT4 IN RL 5 SP,SL HOLD_SP 11SD IND IN RL 6 MYOUT HOLD_TM 21ST AL1 IN SL 7 HOUT 21ST AL1 IN SL 8 C.OUT 21SL AL4 BSL 9 PID NO 21SL AL4 BSL 11 RST/P1/P2 1.TM.S AL1A BSP 11 RST/P1/P2 1.TM.T A2.DB 1.1 BS.P2 MUNO 13 STEP 1.TM.1 A3.DB 1.D BS.P3 R.TYPE 14 ALMSTS 1.TM.1 A3.DB 1.MR SADR NAP.S 15 DLSTS 2.TM.1 A4.DB 1.MR SADR NAP.S 16 PVWR M 2.TM.1 A4.DY BS2 R0.03 17 SIG.STS 2.TM.1 A4.DY BS3 R0.03 18 2.TM.2 A3.DY BS4 <td< td=""><td>3</td><td>TSP</td><td></td><td></td><td>1.ISH</td><td>ALT3</td><td>C.MD</td><td>IN.RH</td><td></td></td<>	3	TSP			1.ISH	ALT3	C.MD	IN.RH	
5 SP.SL HOLD_SP 115D IN.DP 6 MVOUT HOLD_TM 21ST AL1 IN.SH 7 HOUT 21SB AL2 IN.SL IN.SL 8 C.OUT 21SL AL4 B.SL IN.FL 9 PID NO 21SL AL4 B.SL SWTM 11 NOW.STS 21SD R.SL SWTM 12 HOLD 1.TM.S A1.DB 1.1 BSP1 RW.TM 13 STEP 1.TM.1 A3.DB 1.D BS.P1 RW.TM 14 ALM.STS 2.TM.S BS0 MAP.S BS0 MAP.S 16 PWR.M 2.TM.T A1.DY BS1 RO.01 RO.03 17 SIG.STS 2.TM.T A1.DY BS2 RO.03 RO.03 19 ERROR 1.TM.U AA.DY I.RP BS4 RO.04 21 VVP AT AT D RO.05 <td>4</td> <td></td> <td></td> <td></td> <td>1.ISL</td> <td>ALT4</td> <td></td> <td>IN.RL</td> <td></td>	4				1.ISL	ALT4		IN.RL	
6 MVOUT HOLD_TM 2.IST AL1 IN.SH 7 H.OUT 2.ISB AL2 IN.SL 8 C.OUT 2.ISH AL3 INFL 9 PID.NO. 2.ISL AL4 B.SL SW.TM 10 NOW.STS 2.ISL AL4 B.SL SW.TM 11 RST/P1/P2 1.TM.S A1.DB 1.P BS.P1 RW.TM 12 HOLD 1.TM.T A2.DB 1.1 BS.P3 RTYPE 13 STEP 1.TM.1 A3.DB 1.D BS.P3 RTYPE 14 ALM.STS 2.TM.1 A2.DY BS1 RO.01 RO.01 17 SIG.STS 2.TM.1 A2.DY BS3 RO.03 RO.05 21 VVP AT 2.TM.U AL2.H 2.I D.FL RO.06 22 AT-G AL3.H 2.D RO.03 RO.04 RO.04 23 AT-G AL1.L	5	SP.SL		HOLD_SP	1.ISD			IN.DP	
7 H.OUT 21SB AL2 IN.SL 8 C.OUT 21SH AL3 IN.FL 9 PID NO. 21SL AL4 BS.L 10 NOW.STS 21SD R.SL SW.TM 11 RST/P1/P2 1.TM.S AL2.0B 1.1 BS.P1 RW.TM 12 HOLD 1.TM.T A2.0B 1.1 BS.P3 R.TYPE 13 STEP 1.TM.1 A3.DB 1.D BS.P3 R.TYPE 14 ALM.STS 2.TM.S BS0 MAP.S SAOR 15 DISTS 2.TM.T A1.DY BS1 RO.01 17 SIG.STS 2.TM.1 A2.DY BS3 RO.02 18 2.TM.2 A3.DY BS4 RO.04 20 AT-G AL1.H 2.P AL8.S RO.07 23 AT-G AL1.H 2.M D.FL RO.07 24 AT-G AL1.H 2.M <t< td=""><td>6</td><td>MVOUT</td><td></td><td>HOLD_TM</td><td>2.IST</td><td>AL1</td><td></td><td>IN.SH</td><td></td></t<>	6	MVOUT		HOLD_TM	2.IST	AL1		IN.SH	
8 C.OUT 2.ISL AL3 IN.FL 9 PD NO. 2.ISL AL4 B.SL SW.TM 10 NOW.STS 2.ISD R.SL SW.TM 11 NOW.STS 2.ISD R.SL SW.TM 11 NOW.STS 2.ISD R.SL SW.TM 12 HOLD 1.IM.T A2.DB 1.I BSP.27 MUNO 13 STEP 1.IM.T A2.DB 1.D BSP.27 MUNO 14 ALM.STS 1.TM.1 A3.DB 1.D BSP.27 MUNO 16 PWR.M 2.TM.T A1.DY BS1 R0.02 18 2.TM.1 A2.DY BS2 R0.02 18 2.TM.U A4.DY 1.RP B54 R0.04 20 2.TM.U A1.1.H 2.P ALBS R0.05 21 VP AT A1.2.H 2.1 D.F. R0.07 23 AT-G A1.2.H <	7	H.OUT			2.ISB	AL2		IN.SL	
9 PID NO. 2.1SL AL4 B.SL 10 NOW.STS 2.1SD A.1.0B R.SL SW.TM 11 RST/P1/P2 1.TM.S A1.0B 1.P BS.P1 RW.TM 12 HOLD 1.TM.T A2.0B 1.1 BS.P2 MU.NO 13 STEP 1.TM.1 A3.0B 1.D BS.P3 R.TYFE 14 ALM.STS 1.TM.2 A4.0B 1.MR S.AOR 15 DI.STS 2.TM.3 BS0 MAP.S 16 PWR.M 2.TM.1 A1.DY BS1 R0.01 17 SIG.STS 2.TM.1 A3.DY BS3 R0.02 18 2.TM.2 A3.DY BS3 R0.03 R0.05 21 VVP AT AL1.H 2.P AL8S R0.06 22 AT-G A12.H 2.1 O.FL R0.07 23 AT-G A12.H 2.D R0.08 R0.06	8	C.OUT			2.ISH	AL3		IN.FL	
10 NOW.STS 21SD R.SL SW.TM 11 RST/P1/P2 1,TM.S A1.DB 1.P BS.P1 RW,TM 12 HOLD 1.TM.T A2.DB 1.1 BS.P2 RW,TM 13 STEP 1.TM.1 A3.DB 1.D BS.P3 R.TYPE 14 ALM.STS 2.TM.1 A3.DB 1.MR S.AOR 16 PVWR 2.TM.1 A1.DY BS1 R0.01 17 SIG.STS 2.TM.1 A2.DY BS3 R0.02 18 2.TM.1 A2.DY BS3 R0.03 19 ERROR 1.TM.U A4.DY BS4 R0.04 20 2.TM.U R0.05 R0.05 R0.05 R0.05 21 VVP AT A1.2.H 2.1 D.FL R0.07 23 AT-G A12.H 2.1 D.FL R0.07 24 AT-G A12.H 2.1 D.FL R0.07	9	PID NO.			2.ISL	AL4		B.SL	
11 RST/P1/P2 1.TM.S A1.DB 1.P BS.P1 RW.TM 12 HOLD 1.TM.T A2.0B 1.1 BS.P2 MU.NO 13 STEP 1.TM.1 A3.0B 1.D BS.P3 R.TYPE 14 ALM.STS 2.TM.S B50 MAP.S 16 PWR.M 2.TM.1 A1.DY B51 RO.01 17 SIG.STS 2.TM.1 A2.DY B52 R0.02 18 2.TM.2 A3.DY B53 R0.03 19 ERROR 1.TM.U A4.DY 1.RP B54 R0.04 20 AT-G 2.TM.U B53 R0.03 R0.05 21 VVP AT A1.H 2.P ALBS R0.06 22 AT-G A12.H 2.I D.FL R0.07 23 OUT A1.H 2.D R0.08 R0.12 24 A1.4.H 2.MR OUT1 R0.02 <t< td=""><td>10</td><td>NOW.STS</td><td></td><td></td><td>2.ISD</td><td></td><td></td><td>R.SL</td><td>SW.TM</td></t<>	10	NOW.STS			2.ISD			R.SL	SW.TM
12 HOLD 1.TM.T A2.DB 1.I BS.P2 MU.NO 13 STEP 1.TM.1 A3.DB 1.D BS.P3 R.TYPE 14 ALM.STS 1.TM.2 A4.DB 1.MR S.ADR 15 DISTS 2.TM.5 BS0 MAP.S 16 PWR.M 2.TM.1 A2.DY BS1 R0.01 17 SIG.STS 2.TM.1 A2.DY BS2 R0.02 18 2.TM.2 A3.DY BS3 R0.03 19 ERROR 1.TM.U A4.DY 1.RP BS4 R0.04 20 2.TM.U R0.05 R0.05 R0.05 R0.05 R0.05 21 VVP AT A1.H 2.P AL.BS R0.06 22 AT-G AL.H 2.IM.R OUT1 R0.07 23 AT-G AL.L 2.MR OUT2 R0.07 24 AL.H 2.MR OUT1 R0.07 R0.12	11		RST/P1/P2		1.TM.S	A1.DB	1.P	BS.P1	RW.TM
13 STEP 1.TM.1 A3.DB 1.D BS.P3 R.TYPE 14 ALM.STS 2.TM.2 A4.DB 1.MR S.ADR 15 DI.STS 2.TM.S BS0 MAP.S 16 PWR.M 2.TM.1 A2.DY BS1 R.0.01 17 SIG.STS 2.TM.2 A3.DY BS3 R0.03 18 2.TM.2 A3.DY BS3 R0.04 20 2.TM.2 A3.DY BS4 R0.04 20 2.TM.U R0.05 R0.07 R0.05 21 VVP AT A1.1.H 2.P AL85 R0.06 22 AT-G A1.3.H 2.D R0.07 R0.07 23 AT-G A1.3.H 2.D R0.07 R0.07 26 SEG NO A1.1.L R0.07 R0.08 R0.11 R0.09 26 SEG NO A1.1.L R0.11 R0.12 R0.12 R0.11 R0.12 R0.11	12		HOLD		1.TM.T	A2.DB	1.1	BS.P2	MU.NO
14 ALM.STS 1.TM.2 A4.DB 1.MR SADR 15 DISTS 2.TM.5 B50 MAP.5 16 PWR.M 2.TM.T A1.DY BS1 R0.01 17 SIG.STS 2.TM.1 A2.DY BS2 R0.02 18 2.TM.2 A3.DY B53 R0.03 19 EROR 1.TM.U A4.DY 1.RP BS4 R0.04 20 2.TM.U R0.05 R0.05 R0.05 R0.05 R0.05 21 VVP AT AL1.H 2.P AL85 R0.06 22 AT-6 AL2.H 2.I D.FL R0.07 23 AL4.H 2.MR OUT1 R0.09 R0.08 24 AL4.H 2.MR OUT2 R0.10 R0.11 26 PT.NO AL1.L R0.11 R0.12 R0.12 27 END SEG.NO AL2.L EV1 R0.12 R0.12 28	13		STEP		1.TM.1	A3.DB	1.D	BS.P3	R.TYPE
15 DISTS 2.TM.S BS0 MAP.S 16 PWR.M 2.TM.T A1.DY BS1 R0.01 17 SIG.STS 2.TM.1 A2.DY BS2 R0.02 18 2.TM.2 A3.DY BS3 R0.03 19 ERROR 1.TM.U A4.DY 1.RP BS4 R0.04 20 2.TM.U ALL.H 2.P ALS.B R0.05 21 VVP AT ALI.H 2.P ALB.S R0.06 22 AT-G AL2.H 2.1 D.FL R0.07 R0.08 24 AL3.H 2.D R0.08 R0.11 R0.01 R0.10 26 SEG.NO AL1.L EV1 R0.11 R0.11 R0.11 27 END.SEG.NO AL4.L 2.RP EV3 R0.13 RV0.11 R0.02 28 SET TIME AL4.L 2.RP EV4 RW.02 RW.03 30 HB.CD SK.DV	14	ALM.STS			1.TM.2	A4.DB	1.MR		S.ADR
16 PWR.M 2.TM.T A1.DY BS1 R0.01 17 SIG.STS 2.TM.1 A2.DY BS2 R0.02 18 2.TM.2 A3.DY BS3 R0.03 19 ERROR 1.TM.U A4.DY 1.RP BS4 R0.04 20 2.TM.U AL1.H 2.P AL85 R0.05 21 VVP AT AL3.H 2.I D.FL R0.05 22 AT-G AL2.H 2.I D.FL R0.07 23 A1.4 2.D R0.07 R0.08 24 AL4.H 2.MR OUT1 R0.09 25 PT.NO AL1.L R0.11 R0.11 27 END SEG.NO AL2.L EV1 R0.13 29 SET TIME AL3.L EV2 R0.13 20 RPT HB.CD SK.DV EV4 RW.02 31 LINK CODE 3.P HEAT11 RW.03 3	15	DI.STS			2.TM.S			BSO	MAP.S
17 SIG STS 2.TM.1 A2.DY B52 R0.02 18 2.TM.2 A3.DY B53 R0.03 19 EROR 1.TM.U A4.DY 1.RP B54 R0.04 20 2.TM.U B53 R0.04 R0.05 R0.05 R0.05 21 VVP AT AL1.H 2.P AL85 R0.06 22 AT-G AL2.H 2.1 D.FL R0.07 23 AT-G AL3.H 2.D R0.08 24 AL4.H 2.M OUT1 R0.01 25 PT.NO AL1.L R0.11 R0.11 26 \$EG.NO AL2.L EV1 R0.12 28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE 3.P HEAT1 RW.03 32 </td <td>16</td> <td></td> <td>PWR.M</td> <td></td> <td>2.TM.T</td> <td>A1.DY</td> <td></td> <td>BS1</td> <td>RO.01</td>	16		PWR.M		2.TM.T	A1.DY		BS1	RO.01
18 2.TM.2 A3.DY BS3 R0.03 19 ERROR 1.TM.U A4.DY 1.RP BS4 R0.04 20 2.TM.U AL1.H 2.P ALS R0.05 21 VVP AT AL1.H 2.P ALS R0.06 22 AT-G AL2.H 2.I D.FL R0.07 23 AT-G AL3.H 2.D R0.08 24 AT-G AL4.H 2.MR OUT1 R0.09 25 PT.NO OUT2 R0.11 R0.11 R0.11 R0.11 26 SEG.NO AL1.L EV1 R0.12 R0.11 R0.11 27 END.SEG.NO AL3.L EV2 R0.13 RW.01 AL3.L EV2 R0.11 29 SET TIME AL4.L 2.RP EV3 RW.02 RW.02 30 HB.CD SK.DV EV4 RW.02 RW.02 31 LINK CODE S.D <	17	SIG.STS			2.TM.1	A2.DY		BS2	RO.02
19 ERROR 1.TM.U A4.DY 1.RP BS4 R0.04 20 2.TM.U 2.TM.U R0.05 R0.05 21 VVP AT AL1.H 2.P ALBS R0.06 22 AT-G AL2.H 2.1 D.FL R0.07 23 AL3.H 2.D R0.08 R0.08 24 AL3.H 2.D R0.08 R0.09 25 PT.NO AL3.H 2.D R0.10 26 SEG.NO AL1.L R0.11 R0.11 27 END.SEG.NO AL2.L EV1 R0.11 28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE SK.DV EV4 RW.02 33 RST PE-TM HB.DB 3.D HEAT1 RW.05 34 RE	18				2.TM.2	A3.DY		BS3	RO.03
20 2.TM.U AL1.H 2.P AL8S R0.05 21 VVP AT AL1.H 2.P AL8S R0.06 22 AT-G AL2.H 2.1 D.FL R0.07 23 AL3.H 2.D R0.08 R0.09 24 AL3.H 2.D R0.011 R0.09 25 PT.NO AL4.H 2.MR OUT1 R0.09 26 SEG.NO AL1.L EV1 R0.10 26 SEG.NO AL3.L EV2 R0.112 28 RUN TIME AL4.L 2.RP EV3 RV.011 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE SK.DV EV4 RW.03 32 RPT HB.DB 3.D HEAT1 RW.05 34 REN COL1 RW.04 RW.05 RW.06 35 US1 CT.R RW.07 RW.06 RW.07 36	19	ERROR			1.TM.U	A4.DY	1.RP	BS4	RO.04
21 VVP AT AL1.H 2.P AL85 R0.06 22 AT-G AL2.H 2.1 D.FL R0.07 23 AL3.H 2.0 R0.08 R0.08 24 AL3.H 2.0 R0.09 25 PT.NO AL1.H 2.MR OUT1 R0.09 25 PT.NO AL1.L R0.11 R0.11 R0.11 26 SEG.NO AL1.L R0.11 R0.12 R0.11 27 END.SEG.NO AL2.L EV1 R0.12 R0.12 28 RUN TIME AL3.L EV2 R0.13 RV.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE SK.DV EV4 RW.03 32 RPT HB.CS 3.1 CO0L1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN US1 CT.R RW.07 RW.0	20				2.TM.U				RO.05
22 AT-G AL2.H 2.I D.FL R0.07 23 AL3.H 2.D R0.08 R0.08 24 AL3.H 2.D R0.09 R0.09 25 PT.NO OUT1 R0.01 R0.10 26 \$EG.NO AL1.L R0.11 R0.11 27 END.SEG.NO AL2.L EV1 R0.12 28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE SK.DV EV4 RW.02 32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN US1 CTR RW.07 RW.06 35 US1 CTR RW.07 RW.08 37 LOCK LBA.D O.ACT <td>21</td> <td>VVP</td> <td>AT</td> <td></td> <td></td> <td>AL1.H</td> <td>2.P</td> <td>AL.BS</td> <td>RO.06</td>	21	VVP	AT			AL1.H	2.P	AL.BS	RO.06
23 AL3,H 2.D R0.08 24 AL4,H 2.MR OUT1 R0.09 25 PT.NO OUT2 R0.10 26 SEG.NO AL1.L R0.11 27 END.SEG.NO AL2.L EV1 R0.12 28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE SK.DV EV4 RW.03 32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.06 36 WAIT TIME US2 LBA.U RW.08 RW.07 36 WAIT TIME US2 LBA.U RW.08 RW.14 <td>22</td> <td></td> <td>AT-G</td> <td></td> <td></td> <td>AL2.H</td> <td>2.1</td> <td>D.FL</td> <td>RO.07</td>	22		AT-G			AL2.H	2.1	D.FL	RO.07
24 AL4.H 2.MR OUT1 R0.09 25 PT.NO OUT2 R0.10 26 SEG.NO AL1.L R0.11 27 END.SEG.NO AL2.L EV1 R0.12 28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE SK.DV EV4 RW.03 32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.07 36 WAIT TIME US2 LBA.U RW.07 RW.08 37 LOCK LBA.D O.ACT RW.09 38 DI.SL LBA.T CT RW.14	23					AL3.H	2.D		RO.08
25 PT.NO OUT2 R0.10 26 SEG.NO AL1.L RO.11 27 END.SEG.NO AL2.L EV1 R0.12 28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE 3.P HEAT1 RW.03 32 RPT HB.CS 3.I COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL1 RW.06 35 US1 CT.R RW.07 RW.08 37 LOCK LBA.U RW.08 RW.10 38 DI.SL LBA.U RW.18 RW.12 40 DSP.H RV.19 RW.13 RW.13 41 AL2.SPH AL1.SPH RW.13 41 <td< td=""><td>24</td><td></td><td></td><td></td><td></td><td>AL4.H</td><td>2.MR</td><td>OUT1</td><td>RO.09</td></td<>	24					AL4.H	2.MR	OUT1	RO.09
26 SEG.NO AL1.L R0.11 27 END.SEG.NO AL2.L EV1 R0.12 28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE SK.DV EV4 RW.03 32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL1 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.08 37 LOCK LBA.U RW.08 RW.09 38 DI.SL LBA.T CT RW.09 39 DSP.H RP.HY RW.12 RW.12 40 DSP.L AL1.SPH RW.13	25	PT.NO						OUT2	RO.10
27 END.SEG.NO AL2.L EV1 R0.12 28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE 3.P HEAT1 RW.03 32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.06 36 WAIT TIME US2 LBA.U RW.08 37 LOCK LBA.D O.ACT RW.09 38 DI.SL LBA.T CT RW.12 40 DSP.H RP.HY RW.12 RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.J OL RW.	26	SEG.NO				AL1.L			RO.11
28 RUN TIME AL3.L EV2 R0.13 29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE 3.P HEAT1 RW.03 32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.06 RW.06 37 LOCK LBA.U RW.08 RW.07 38 DI.SL LBA.U RW.08 RW.09 38 DI.SL LBA.T CT RW.10 39 DSP.H RP.HY RW.12 RW.13 41 AL2.SPH 4.P OH RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.J OL RW.15	27	END.SEG.NO				AL2.L		EV1	RO.12
29 SET TIME AL4.L 2.RP EV3 RW.01 30 HB.CD SK.DV EV4 RW.02 31 LINK CODE 3.P HEAT1 RW.03 32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.CB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.08 37 LOCK LBA.U RW.09 38 DI.SL LBA.T CT RW.09 38 DI.SL LBA.T CT RW.10 39 DSP.H RP.HY RW.12 RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.1 OL RW.15 43 AL4.SPH 4.P OH RW.14 44 AL4.SPH 4.D 4.AL3.SPL 44	28	RUN TIME				AL3.L		EV2	RO.13
30 HB.CD SK.DV EV4 RW.02 31 LINK CODE 3.P HEAT1 RW.03 32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.07 RW.07 36 WAIT TIME US2 LBA.U RW.08 RW.07 37 LOCK LBA.D O.ACT RW.09 38 DI.SL LBA.T CT RW.12 40 DSP.H RP.HY RW.12 RW.12 40 DSP.L AL1.SPH RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.D AL4.SPH 4.D 44 AL3.SPH 4.D AL3.SPL 4.D 44 AL3.SPL AL4.SPL PO A	29	SET TIME				AL4.L	2.RP	EV3	RW.01
31 LINK CODE 3.P HEAT1 RW.03 32 RPT HB.CS 3.I COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.08 37 LOCK LBA.U RW.08 37 LOCK LBA.U RW.09 38 DI.SL LBA.T CT RW.12 40 DSP.H RP.HY RW.12 RW.13 41 AL1.SPH RW.14.P RW.13 RW.14 42 AL3.SPH 4.P OH RW.15 43 AL4.SPH 4.D AL3.SPH 4.D 4.D 46 AL3.SPL PO AL3.SPL 4.3 4.4.SPL 4.3	30	HB.CD				SK.DV		EV4	RW.02
32 RPT HB.CS 3.1 COOL1 RW.04 33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.08 37 LOCK LBA.U RW.08 37 LOCK LBA.D O.ACT RW.09 38 DI.SL LBA.T CT RW.12 40 DSP.H RP.HY RW.12 RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.D 4.D 4.1 44 AL3.SPH 4.D 4.1 4.1 45 AL1.SPL PO 4.1 4.1 46 AL3.SPL PO 4.1 4.1 48 AL4.SPL PO 1.3 1.3	31	LINK CODE					3.P	HEAT1	RW.03
33 RST PE-TM HB.DB 3.D HEAT2 RW.05 34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 RW.08 37 LOCK LBA.U RW.09 38 DI.SL LBA.D O.ACT RW.09 39 DSP.H RP.HY RW.12 RW.12 40 DSP.L AL1.SPH RW.13 RW.14 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.D PM.15 PM.15 44 AL3.SPH AL1.SPL PO PO 46 AL3.SPL PO AL3.SPL PO 48 AL4.SPL AL4.SPL PO PO	32	RPT				HB.CS	3.1	COOL1	RW.04
34 REN PWR.F 3.MR COOL2 RW.06 35 US1 CT.R RW.07 36 WAIT TIME US2 LBA.U RW.08 37 LOCK LBA.D O.ACT RW.09 38 DI.SL LBA.T CT RW.10 39 DSP.H RP.HY RW.12 RW.13 41 ODSP.L AL1.SPH RW.14 RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.D RW.15 44 AL3.SPL PO AL3.SPL PO 46 AL3.SPL AL3.SPL PO AL3.SPL 48 AL4.SPL AL4.SPL FO FO	33	RST	PE-TM			HB.DB	3.D	HEAT2	RW.05
35 US1 CT.R RW.07 36 WAIT TIME US2 LBA.U RW.08 37 LOCK LBA.D O.ACT RW.09 38 DI.SL LBA.T CT RW.10 39 DSP.H RP.HY RW.12 40 DSP.L AL1.SPH RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.D RW.15 4.4 44 AL2.SPL PO 4.1.SPL 4.1.SPL 45 AL3.SPL AL3.SPL 4.3.SPL 4.3.SPL 46 AL3.SPL AL3.SPL 4.3.SPL 4.4.SPL	34	REN				PWR.F	3.MR	COOL2	RW.06
36 WAIT TIME US2 LBA.U RW.08 37 LOCK LBA.D O.ACT RW.09 38 DI.SL LBA.T CT RW.10 39 DSP.H RP.HY RW.12 40 DSP.L AL1.SPH RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.D RW.15 AL4.SPH 4.D 44 AL3.SPL AL3.SPL PO AL3.SPL 4.3.SPL 4.3.SPL 46 AL3.SPL AL3.SPL PO 4.4.SPL FO FO	35		US1			CT.R			RW.07
37 LOCK LBA.D O.ACT RW.09 38 DI.SL LBA.T CT RW.10 39 DSP.H RP.HY RW.12 40 DSP.L AL1.SPH RW.13 41 AL2.SPH 4.P OH 42 AL3.SPH 4.I OL 43 AL4.SPH 4.D W.15 44 AL4.SPH 4.D 4.MR 45 AL1.SPL PO 46 AL2.SPL PO 48 AL3.SPL Image: All and	36	WAIT TIME	US2			LBA.U			RW.08
38 DI.SL LBA.T CT RW.10 39 DSP.H RP.HY RW.12 40 DSP.L AL1.SPH RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.D RW.15 44 AL4.SPH 4.D RW.15 45 AL4.SPH PO AL1.SPL 46 AL2.SPL PO AL3.SPL 48 AL4.SPL AL4.SPL PO	37		LOCK			LBA.D		0.ACT	RW.09
39 DSP.H RP.HY RW.12 40 DSP.L AL1.SPH RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.I OL RW.15 44 AL4.SPH 4.D Image: Althous and the second and t	38		DI.SL			LBA.T		CT	RW.10
40 DSP.L AL1.SPH RW.13 41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.D RW.15 RW.15 44 AL4.SPH 4.D RW.15 RW.15 45 AL1.SPL AL1.SPL PO 46 AL3.SPL PO AL3.SPL RU.15 48 AL4.SPL AL4.SPL RU.15 RU.15	39		DSP.H				RP.HY		RW.12
41 AL2.SPH 4.P OH RW.14 42 AL3.SPH 4.I OL RW.15 43 AL4.SPH 4.D RW.15 44 AL4.SPH 4.D HYS 45 AL1.SPL PO AL2.SPL PO 46 AL3.SPL PO AL3.SPL AL3.SPL AL3.SPL 48 AL4.SPL AL4.SPL AL4.SPL AL4.SPL AL4.SPL	40		DSP.L			AL1.SPH			RW.13
42 AL3.SPH 4.1 OL RW.15 43 AL4.SPH 4.D	41					AL2.SPH	4.P	OH	RW.14
43 AL4.SPH 4.D 44 AL4.SPH 4.D 45 AL1.SPL HYS 46 AL2.SPL PO 47 AL3.SPL AL3.SPL 48 AL4.SPL AL4.SPL	42					AL3.SPH	4.1	OL	RW.15
44 All SPL HYS 45 All SPL All SPL 46 All SPL PO 47 All SPL All SPL 48 All SPL All SPL	43					AL4.SPH	4.D		1
45 AL1.SPL PO 46 AL2.SPL PO 47 AL3.SPL PO 48 AL4.SPL PO	44						4.MR	HYS	1
46 AL2.SPL PO 47 AL3.SPL PO 48 AL4.SPL PO	45					AL1.SPL			1
47 AL3.SPL	46					AL2.SPL		PO	1
48 AL4.SPL	47					AL3.SPL			1
	48					AL4.SPL			1
49 RDV	49						RDV	1	1

D-Register D0000~D0700

	PROCESS	FUNCTION	SET POINT	SIGNAL	ALARM	PID	IN/OUT	PLC
D-Reg.	0	100	200	300	400	500	600	700
50					B.GRP			
51					HB.BH		RET.T	N.SWT
52					HB.BL		RET.H	N.RWT
53							RET.L	
54					AL1.MODE			N.RTY
55					AL2.MODE		OPR	N.SAD
56					AL3.MODE			
57					AL4.MODE		O.LED	N.001
58					1			N.002
59					VAL1.P			N.003
60					VAL2.P			N.004
61					VAL3.P		COM.P	N.005
62					VAL4.P		BAUD	N.006
63							PRTY	N.007
64					VAL1.DB		S.BIT	N.008
65					VAL2.DB		D.LEN	N.009
66					VAL3.DB		ADDR	N.010
67					VAL4.DB		RP.TM	N.011
68					1		RBS	N.012
69								N.013
70								N.W01
71								N.W02
72								N.W03
73							COM.P	N.W04
74							BAUD	N.W05
75							PRTY	N.W06
76							S.BIT	N.W07
77							D.LEN	N.W08
78							ADDR	N.W09
79							RP.TM	N.W010
80								N.W011
81								N.W012
82								N.W013
83								N.W014
84							V.TT	N.W015
85							V.HYS	
86							V.DB	
87							V.PDB	
88							V.PHS	
89							V.CMD	
90							V.A/M	
91							V.CAL	
92								
93								
94								
95								
96								
97								
98								
99							1	

D-Register D0800~D1500

D-Peg	RESERVED	RESERVED	PT INFO	PT1	PT2	RESERVED	RESERVED	RESERVED
D-Reg.	800	900	1000	1100	1200	1300	1400	1500
0								
1			TMU	1.LC	2.LC			
2			STC	1.SSP	2.SSP			
3			W.ZON					
4			W.TM	1.SP1	2.SP1			
5				1.TM1	2.TM1			
6				1.TS1	2.TS1			
7				1.SP2	2.SP2			
8				1.TM2	2.TM2			
9				1.TS2	2.TS2			
10				1.SP3	2.SP3			
11				1.TM3	2.TM3			
12				1.TS3	2.TS3			
13				1.SP4	2.SP4			
14				1.TM4	2.TM4			
15				1.TS4	2.TS4			
16				1.SP5	2.SP5			
17				1.TM5	2.TM5			
18				1.155	2.155			
19				1.SP6	2.SP6			
20				1.TM6	2.TM6			
21				1.156	2.156			
22				1.SP7	2.SP7			
23				1.IM/	2.IM7			
24				1.157	2.157			
25				1.5P8	2.5P8			
26				1.1M8	2.1M8			
27				1,158	2.158			
20				1.5P9	2.3P9			
29				1.11019	2.11019			
21				1.159	2.139			
37				1.3FA 1.TMA	2.3FA	-		
33				1.TWA	2.1101A			
3/				1.13A	2.13A			
35				1 TMR	2.51 D 2 TMR			
36				1 TSB	2.110D			
37				1 SPC	2.130 2.SPC	1		
38				1 TMC	2.5FC			
39				1 TSC	2 TSC			
40				1 SPD	2 SPD	1		
41				1 TMD	2 TMD	1		
42		ł		1.TSD	2.TSD	1		
43				1 SPE	2 SPE			
44				1.TME	2.TME			
45				1.TSE	2.TSE			
46				1.SPF	2.SPF			
47		1		1.TMF	2.TMF	1		
48				1.TSF	2.TSF			
49		1				1		
					1	1	1	
D-Register D0800~D1500

D-Reg.	uPRINTER	RESERVED	PT INFO	PT1	PT2	RESERVED	RESERVED	RESERVED
	800	900	1000	1100	1200	1300	1400	1500
50								
51				1.RPT	2.RPT			
52				1.RST	2.RST			
53				1.REN	2.REN			
54								
55								
56								
57								
58								
59								
60								
61								
62								
63								
64								
65								
66								
67								
60								
70								
70								
72								
72								
73								
75								
76								
77								
78								
79								
80								
81								
82								
83								
84								
85								
86								
87								
88								
89								
90								
91								
92								
93								
94								
95								
96								
97								
98								
99								