

사용설명서 SL140° (리미트 컨트롤러)

production inquiry and after service.

리미트 컨트롤러로서 전송출력, Over출력 등 각종출력을 지원하며 Min, Max값 기억 후 표시등 다양한 기능을 갖춘 제품입니다.

Copyright® 2016 ㈜삼원테크 이 사용 설명서는 저작권법에 의해 보호 받는 저작물입니다. ㈜삼원테크의 사건 서면 동의 없이 사용 설명서의 일부 또는 전체를 복제, 공중 송신, 배포, 번역하거나 전자 매체 또는 기계가 읽을 수 있는 형태로 바꿀 수 없습니다.

사용설명서

안전에 관한 주의(지시)사항

본 사용설명서에서 사용된 심볼 마크

- "취급주의" 또는 "주의사항"을 표시합니다.
 - 이 사항을 위반할 시, 사망이나 중상 및 기기의 심각한 손상을 초래 할 수 있습니다.
 - (1) 제품 : 인체 및 기기를 보호하기 위하여 반드시 숙지해야 할 사항이 있는 경우에 표시됩니다.
 - (2) 사용자 설명서 : 감전 등으로 인하여 사용자의 생명과 신체에 위험이 우려되는 경우, 이를 막기 위하여 주의사항을 기술하고 있습니다.

■ "접지단자"를 표시합니다.

제품설치 및 조작시 반드시 지면과 접지를 하여 주시기 바랍니다.

■ "보충설명"을 표시합니다.

설명을 보충하기 위한 내용을 기술하고 있습니다.

■ "참조사항"을 표시

참조하여야 할 내용에 대하여 기술하고 있습니다.

본 사용설명서에 관한 주의사항

- 본 사용설명서는 최종 사용자가 항시 소지할 수 있도록 전달하여 주시고 언제라도 볼 수 있는 장소에 보관하여 주시기 바랍니다.
- 본 제품은 사용설명서를 충분히 숙지한 후 사용하여 주시기 바랍니다.
- 본 사용설명서는 제품에 대한 상세기능을 자세하게 설명한 것으로, 사용설명서 이외의 사항에 대해서는 보증하지 않습니다
- 본 사용설명서의 일부 또는 전부를 무단으로 편집 또는 복사하여 사용할 수 없습니다.
- 본 사용설명서의 내용은 사전통보 또는 예고 없이 임의로 변경될 수 있습니다.
- 본 사용설명서는 만전을 기하여 작성되었지만, 내용상 미흡한 점 또는 오기, 누락 등이 있는 경우에는 구입처 (대리점 등) 또는 당사 영업부로 연락하여 주시면 감사하겠습니다.

안전에 관한 주의(지시)사항

본 제품의 안전 및 개조(변경)에 관한 주의사항

- 본 제품 및 본 제품에 연결하여 사용하는 시스템의 보호 및 안전을 위하여, 본 사용설명서의 안전에 관한 주의(지시) 사항을 숙지하신 후 본 제품을 사용하여 주시기 바랍니다.
- 본 사용설명서의 지시에 의하지 않고 사용 또는 취급된 경우 및 부주의 등으로 인하여 발생된 모든 손실에 대하여 당사는 책임을 지지 않습니다.
- 본 제품 및 본 제품에 연결하여 사용하는 시스템의 보호 및 안전을 위하여, 별도의 보호 또는 안전회로 등을 설치하는 경우에는 반드시 본 제품의 외부에 설치하여 주시기 바랍니다.
- 본 제품의 내부에 개조(변경) 또는 추가하는 것을 금합니다.
- 임의로 분해, 수리 개조하지 마십시오. 감전, 화재 및 오동작의 원인이 됩니다.
- 본 제품의 부품 및 소모품을 교환할 경우에는 반드시 당사 영업부로 연락을 주시기 바랍니다.
- 본 제품에 수분이 유입되지 않도록 해 주시기 바랍니다. 고장의 원인이 될 수 있습니다.
- 본 제품에 강한 충격을 주지 마십시오. 제품손상 및 오동작의 원인이 될 수 있습니다.

본 제품의 면책에 관하여

- 당사의 품질보증조건에서 정한 내용 이외에는, 본 제품에 대하여 어떠한 보증 및 책임을 지지 않습니다.
- 본 제품을 사용함에 있어 당사가 예측 불가능한 결함 및 천재지변으로 인하여 사용자 또는 제3자가 직접 또는 간접적인 피해를 입을 어떠한 경우라도 당사는 책임을 지지 않습니다.

본 제품의 품질보증조건에 관하여

- 제품의 보증기간은 본 제품을 구입한 날로부터 1년간으로 하며, 본 사용설명서에서 정한 정상적인 사용상태에서 발생한 고장의 경우에 한해 무상으로 수리해 드립니다.
- 제품의 보증기간 이후에 발생한 고장 등에 의한 수리는 당사에서 정한 기준에 의하여 실비(유상) 처리 합니다.
- 아래와 같은 경우, 보증수리기간 내에서 발생한 고장이라도 실비로 처리합니다.
 - (1) 사용자의 실수나 잘못으로 인한 고장(예: 비밀번호 분실에 의한 초기화 등)
 - (2) 천재지변에 의한 고장(예: 화재, 수해 등)
 - (3) 제품 설치 후 이동 등에 의한 고장
 - (4) 임의로 제품의 분해, 변경 또는 손상 등에 의한 고장
 - (5) 전원 불안정 등의 전원 이상으로 인한 고장
 - (6) 기타
- 고장 등으로 인하여 A/S가 필요한 경우에는 구입처 또는 당사 영업부로 연락 바랍니다.

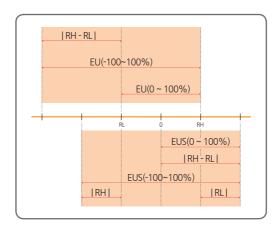
안전에 관한 주의(지시)사항

설치장소 및 환경에 대한 주의사항

- 감전이 될 위험이 있으므로 본 제품을 판넬에 설치된 상태에서 통전(전원ON) 후 조작하여 주시기 바랍니다. (감전주의)
- 다음과 같은 장소 및 환경에서는 본 제품을 설치하지 말아 주시기 바랍니다.
 - (1) 사람이 무의식중에 단자에 접촉될 수 있는 장소
 - (2) 기계적인 진동이나 충격에 직접 노출된 장소
 - (3) 부식성 가스 또는 연소성 가스에 노출된 장소
 - (4) 온도변화가 많은 장소
 - (5) 지나치게 온도가 높거나(50℃ 이상), 낮은(10℃ 이하) 장소
 - (6) 직사광선에 직접 노출된 장소
 - (7) 전자파의 영향을 많이 받는 장소
 - (8) 습기가 많은 장소(주위습도가 85% 이상인 장소)
 - (9) 화재시 주위에 불에 타기 쉬운 물건들이 있는 장소
 - (10) 먼지나 염분 등이 많은 장소
 - (11) 자외선을 많이 받는 장소

설치시 주의사항

- 노이즈(NOISE)의 원인이 되는 기기 혹은 배선을 본 제품의 가까이에 두지 마십시오.
- 제품은 10~50℃(일착 설치시 최대 40℃), 20~85%RH(결로되지 않을 것)의 범위에서 사용하여 주시기 바랍니다. 특히, 발열이 심한 기기를 가까이 하지 마십시오.
- 제품을 경사지게 설치하지 마신시오
- 제품을 -20~60℃, 5~85%RH(결로되지 않을 것) 내에서 보관하여 주시기 바랍니다. 특히, 10℃이하 저온에서 사용하실 때에는 충분하게 워밍업(WARMING UP)을 시킨 후 사용하십시오.
- 배선시에는 모든 계기의 전원을 차단(OFF)시킨 후 배선하여 주시기 바랍니다. (감전주의)
- 젖은 손으로 작업하지 마십시오. 감전의 위험이 있습니다.
- 사용시 화재, 감전, 상해의 위험을 줄이기 위해 기본 주의 사항을 따라 주시기 바랍니다.
- 설치 및 사용방법은 사용설명서에 명시된 방법대로만 사용해 주시기 바랍니다.
- 접지에 필요한 내용은 설치 요령을 참조하십시오. 단, 수도관, 가스관, 전화선, 피뢰침에는 절대로 접지하지 마십시오.
 폭발 및 인화의 위험이 있습니다.
- 본 제품의 기기간 접속이 끝나기 전에는 통전(전원ON)하지 마십시오. 고장의 원인이 됩니다.
- 본 제품에 있는 방열구를 막지 마십시오. 고장의 원인이 됩니다.


정격전압 및 소비전력 주의

- 본 제품은 별도의 조작없이 100~240V AC, 50/60Hz 10VA Max 에서 동작합니다.
- DC 전원 사용시 24V DC, 3,9VA Max 에서 동작하오니 주의하시기 바랍니다.
- 정격 이외의 전원을 사용할 때에는 감전 및 화재의 위험이 있습니다.

공학단위(Engineering Units) - EU, EUS

- 공학단위인 EU, EUS는 컨트롤러의 내부파라메터를 설명하는데 사용됩니다.
- 센서 종류(IN-T)나 입력 범위의 상한・하한값(INRH, INRL)을 변경하면 EU(), EUS() 로표기된 파라메터는 기존 설정값에 비례해서 변경됩니다. (단. 범위 상한・하한 설정값은 초기화 됩니다.)
- ☞ EU() :계기(INSTRUMENT)의 범위(RANGE)에 따른 공학단위(ENGINEERING UNIT)의 값(VALUE)
- ☞ EUS(): 계기(INSTRUMENT)의 전범위(SPAN)에 따른 공학단위(ENGINEERING UNIT)의 범위(RANGE)

RL: 입력 범위 하한값 RH: 입력 범위 상한값

* EU(), EUS()의 범위

	범위	중심점
EU(0 ~ 100%)	RL ~ RH	RH - RL /2 + RL
EU(-100 ~ 100%)	-(RH-RL + RL)~RH	RL
EUS(0 ~ 100%)	0 ~ RH - RL	RH - RL /2
EUS(-100 ~ 100%)	- RH-RL ~ RH-RL	0

** 예) INPUT = TC,K2

RANGE = - 200,0°C(RL) ~ 1370,0°C(RH)

	범위	중심점
EU(0 ~ 100%)	- 200.0 ~ 1370.0℃	585.0℃
EU(-100 ~ 100%)	- 1770.0 ~ 1370.0℃	- 200.0°C
EUS(0 ~ 100%)	0 ~ 1570.0℃	785.0℃
EUS(-100 ~ 100%)	- 1570.0 ~ 1570.0℃	0.0℃

제품 표기

숫자·문자 7세그먼트

■ LED의 수치·문자표시에 대해서 숫자 7세그먼트 LED에는 다음과 같이 표시합니다.

0	1	2	3	4	5	6	7
8	8	8	8	8	8	8	8
8	9		-	/	Half -	Half 1	Half -1
8	8	8.	8	8	7	7	4

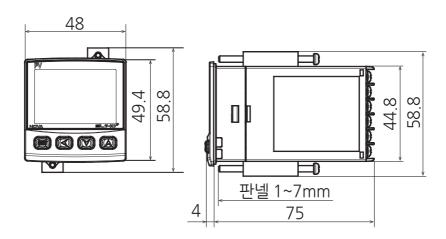
영자 7세그먼트

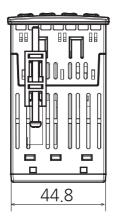
■ LED의 수치·문자표시에 대해서 영자 7세그먼트 LED에는 다음과 같이 표시합니다.

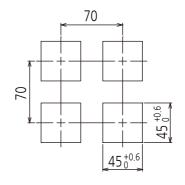
A, a	B, b	C, c	D, d	E, e	F, f	G, g	H, h
8	8	8	8	8	8	8	\boldsymbol{B}
l, i	J, j	K, k	L, I	M, m	N, n	О, о	P, p
B	8	8	B	8	8	8	8
Q, q	R, r	S, s	T, t	U, u	V, v	W, w	X, x
8	8	8	8	B	B	8	\boldsymbol{H}
Y, y	Z, z						
8	8						

취급상의 주의 숫자 5와 영자 S 는 같은 표시로 됩니다.

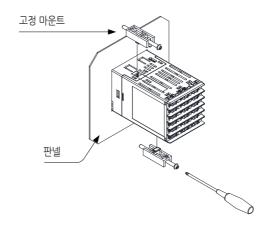
목차


사용설명서	1
1. 제품의 치수 및 설치	8
1.1. 외형치수 및 판넬 커팅 치수~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8
1.2. 마운트(MOUNT) 부착방법······	9
1.3. 전원선 권장 사양1	0
1.4. 단자 권장 사양 1	0
1.5. 단자배치 및 외부결선도 ······· 1	1
1.6. 전원배선	2
1.7. 측정입력(ANALOG INPUT)배선 1 1.7.1. 측온저항체 입력(RTD INPUT) 1 1.7.2. 직류전압 입력(DC VOLTAGE INPUT) 1 1.7.3. 직류전류 입력(DC CURRENT INPUT) 1	13
1.8. 외부접점출력(릴레이) 배선 ······ 1	4
2. 표시부 및 키 조작1	5
3. 표시화면의 구성1	6
4. 파라메터 전개도	7


목차


5.	그룹	별파	라메터 설정	18
	5.1.	제어그룹	₫(G,CTL) ·····	18
		5.1.1.	설정값 설정	18
		5.1.2.	설정값 상/하한 설정 ·····	18
		5.1.3.	리미트 동작 방향 설정 ····	19
			릴레이 출력 동작 설정	
		5.1.5.	출력 방향 설정	19
		5.1.6.	히스테리시스 설정	20
			시간 단위 설정 ····	
			Key 잠금 설정 ·····	
		5.1.9.	암호 설정	21
		5.1.10	. 초기화 실행	21
	5.2.	입력그룹	₫(G,IN) ····	26
		5.2.1.	입력종류 설정	26
		5.2.2.	입력단위 설정	26
		5.2.3.	입력 범위 설정	28
		5.2.4.	소수점 변경 설정 ····	28
		5.2.5.	PV 표시범위 설정 ·····	29
		5.2.6.	입력 필터 설정	29
		5.2.7.	표시 필터 설정	30
		5.2.8.	센서 단선시 PV 동작 방향 설정 ·····	30
		5.2.9.	기준접점보상 기능 설정 ·····	30
		5.2.10	. 입력 전체 보정 설정	31
		5.2.11	. 입력 구간 보정 설정 ·····	31
	5.3.	경보그룹	₫(G,ALM)	34
		5.3.1.	경보종류 설정	34
		5.3.2.	경보점 설정	34
		5.3.3.	상/하한 경보점 설정	35
		5.3.4.	히스테리시스 설정	35
		5.3.5.	지연시간 설정	35
6	에근	ᆝᄼᆝ서처	2	38

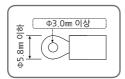
1.제품의 치수 및 설치

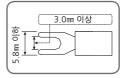

1.1.외형치수 및 판넬 커팅 치수

1.2. 마운트(MOUNT) 부착방법

- 1) 설치하고자 하는 판넬을 절단합니다. [1.1. 외형치수 및 판넬 커팅 치수 참조]
- 2) 상기 그림과 같이 본 제품을 본체의 후면부터 설치구멍에 삽입합니다.
- 3) 고정마운트를 이용하여 본체를 고정합니다. (드라이버 사용)

고정마운트의 체결시 주의사항

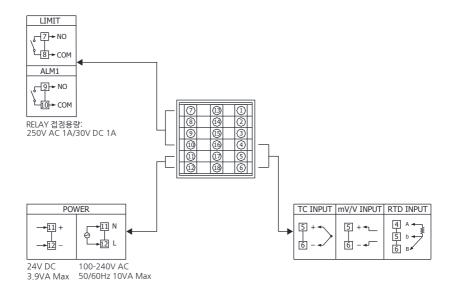

- 고정마운트를 고정시킬 때 무리한 힘으로 조이지 말아 주시기 바랍니다. 무리하게 조일경우, 부품 파손의 원인이 될 수 있습니다.
- 고정마운트 체결 최대토크는 0.25N·m 이하로 사용하시기 바랍니다.


1.3. 전원선 권장 사양

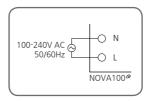
■비닐절연전선 KSC 3304 0.9~2.0 mi

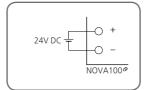
1.4. 단자 권장 사양

■그림과 같은 M3 스크루(SCREW)에 적합한 절연 슬리브(SLEEVE)가 부착된 압착단자를 사용하여 주시기 바랍니다.



• 공급하는 모든 계기의 주전원을 차단(OFF)하여 배선 케이블(CABLE)이 통전되지 않는지 테스터(TESTER) 등으로 확인한 후 배선을 하여 주시기 바랍니다.


- 통전 중에는 감전될 위험이 있으므로 절대로 단자에 접촉되지 않도록 하여 주시기 바랍니다.
- 반드시 주전원을 차단(OFF)시킨 후 배선을 하여 주시기 바랍니다.
- 사용하지 않는 단자에 접속을 하는 경우에는 시스템의 손상이나 오동작 등 이상동작이 발생할 수 있으므로 결선하지 않도록 주의하여 주시기 바랍니다.
- 권장조임토크: 0.4N·m ~ 0.55N·m

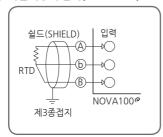

1.5. 단자배치 및 외부결선도

1.6. 전원배선

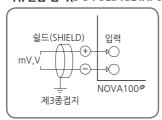
- 전원배선은 비닐절연전선 0.9~2.0mi (최대정격전압 300V)와 동등 이상의 성능을 가진 케이블 또는 전선을 사용하여 배서하여 주시기 바랍니다.
- 이상 상황 발생에 대비하여 주전원 차단 장치를 사용하시기 바랍니다.

• 천원선 배선의 경우, N상과 L상(DC 전원일 경우, +상과 -상)을 반드시 지켜서 연결해 주시기 바랍니다. 그렇지 않을 경우, 오동작 및 제품 파손의 원인이 될 수 있습니다.

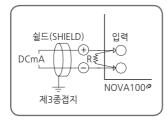
- 감전될 위험이 있으므로 사용단자를 배선할 때에는 반드시 NOVA100[®] 본체의 전원 및 외부공급 전원을 OFF하여 주시기 바랍니다.
- DC 전원은 24V DC. 3.9VA Max 에서 동작합니다.


1.7. 측정입력(ANALOG INPUT)배선

• 입력극성에 주의하여 접속하여 주시기 바랍니다. 잘못된 접속은 본체의 고장 원인이 됩니다.



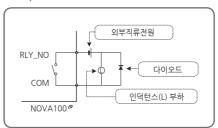
- 입력배선은 쉴드(SHIELD)가 부착된 것을 사용하여 주시기 바랍니다. 또한, 쉴드(SHIELD)는 1점 접지를 시켜 주시기 바랍니다.
- 측정입력 신호선은 전원회로 또는 접지회로로부터 간격을 띄워 배선하여 주시기 바랍니다.
- 도선저항이 적고, 3선간의 저항 차가 없는 전선을 사용하여 주시기 바랍니다.


1.7.1. 측온저항체 입력(RTD INPUT)

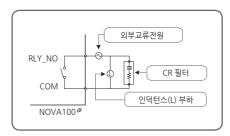
1.7.2. 직류전압 입력(DC VOLTAGE INPUT)

1.7.3. 직류전류 입력(DC CURRENT INPUT)

1.8. 외부접점출력(릴레이) 배선


■ 보조 릴레이와 솔레노이드 밸브와 같은 인덕턴스(L) 부하를 사용하는 경우에는, 오동작 및 릴레이 고장의 원인이 되므로 반드시 스파크 제거용의 서지 억제기(SURGE SUPPRESSOR) 회로로 하여 CR 필터(AC 사용시) 또는 다이오드 (DIODE)(DC 사용시)를 병렬로 삽입하여 주시기 바랍니다.

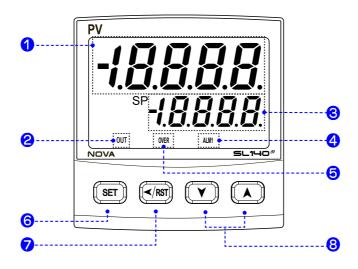
■ CR 필터 권장품


▶ 성호전자 : BSE104R120 25V (0.1µ+120Ω)

► HANA PARTS CO. : HN2EAC

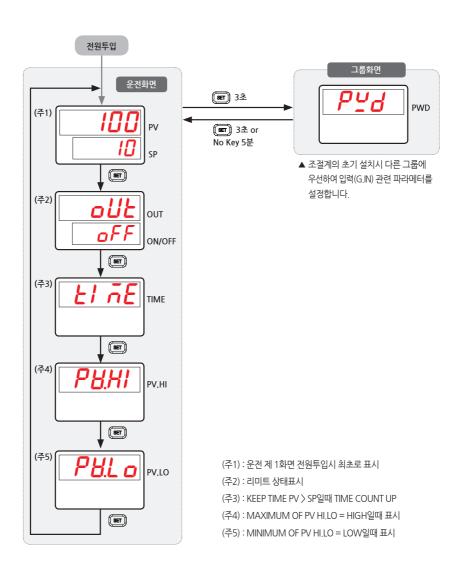
▶ 松尾電機(株): CR UNIT 953, 955 etc▶ (株)指月電機製作所: SKV, SKVB etc▶ 信英通信工業(株): CR-CFS, CR-U etc

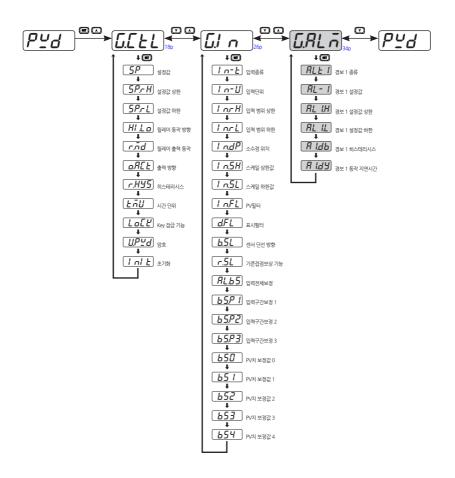
▲ DC 전원시


▲ AC 전원시

- 저항부하가 본 제품의 Spec(사양)을 OVER시에는, 보조 릴레이를 사용하여 부하를 ON/OFF하여 주시기 바랍니다
- 감전될 위험이 있으므로 외부접점출력을 배선할 경우, 반드시 NOVA100° 본체 전원 및 외부공급전원을 OFF하여 주시기 바랍니다.

- DIODE, CR 필터 연결 인덕턴스(L) 부하 단자(SOCKET)에 직접 연결하여 주시기 바랍니다.
- 보조 릴레이 연결 보조 릴레이 COIL 정격은 컨트롤러의 접점용량 이하의 것을 사용하여 주시기 바랍니다. (릴레이 접점용량: 250V AC 1A/30V DC 1A)


2. 표시부 및 키 조작


번호	내 용
1	PV 표시, 파라메터 명칭
2	출력시 소등
3	SP 설정, 파라메터 설정
4	알람 동작시 점등
6	• PV가 설정값을 넘을 때 점등 (HI,LO = HIGH 일 경우) • PV가 설정값보다 작을 때 점등 (HI,LO = LOW 일 경우)

번호	내용
6	설정내용의 등록 및 파라메터 선택시 사용 운전화면에서 표시화면 변경시 사용 운전화면에서 SET를 3초 이상 누른다. → "설정 화면" 으로 이동 설정 화면에서 SET를 3초 이상 누른다. → "운전화면" 으로 이동 □ "문전화면" 으로 이동
7	・수정하고자하는 소수점 위치 변경시 사용 ・RST : OVER 해제 후 리셋 사용 (3초간 누름)
8	파라메터의 내용 변경시, 그룹간의 이동시 사용

3. 표시화면의 구성

4. 파라메터 전개도

: 옵션

5. 그룹별 파라메터 설정

5.1. 제어그룹(G.CTL)

5.1.1. 설정값 설정

■ 리미트 동작을 위한 설정값(SP)를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
SP	Setting Point	EU(0.0 ~ 100.0%)	EU	EU(0.0%)	상시표시

5.1.2. 설정값 상/하한 설정

- 설정값의 입력시 상/하한값을 설정하기 위한 파라메터입니다.
- SP,RH/SP,RL는 센서입력 설정 시 또는 IN.RH/IN.RL 변경시에는 IN.RH/IN.RL (MV, V 센서입력시는 IN.SH)로 초기화됩니다.

기호	파라메터	설정범위	단위	초기치	표시조건
SP.RH	Set Point Range High	EU(0.0 ~ 100.0%)	EU	EU(100.0%)	상시표시
SP.RL	Set Point Range Low	EU(0.0 ~ 100.0%)	EU	EU(0.0%)	상시표시

5.1.3. 리미트 동작 방향 설정

- 리미트 동작시 상한 또는 하한 리미트 동작을 설정하기 위한 파라메터입니다.
- HIGH인 경우 PV〉SP일때 리미트 동작하고 LOW인 경우 PV〈SP일때 리미트 동작합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
HI,LO	High or Low Select	LOW, HIGH	ABS	HIGH	상시표시

5.1.4. 릴레이 출력 동작 설정

- 전원 ON시에 릴레이 출력의 동작을 설정하기 위한 파라메터입니다.
- R.MD = Off일 경우 무조건 릴레이 출력은 OFF됩니다. (RESET시에는 ON됩니다.) R.MD = ON일 경우 OVER 발생시에만 릴레이 출력은 OFF됩니다.

기3	파라메터	설정범위	단위	초기치	표시조건
R.N	D Restart Mode	OFF, ON	ABS	OFF	상시표시

5.1.5. 출력 방향 설정

- 릴레이 출력의 역동작(REV)/정동작(FWD)을 설정하기 위한 파라메터입니다.
- O.ACT가 'REV(역동작)'로 설정되면 PV가 SP보다 적을 경우(PV < SP) 릴레이 출력이 ON되고, 'FWD(정동작)'으로 설정되었을 경우에는 반대로 동작합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
O.ACT	Output Direction	REV, FWD	ABS	REV	상시표시

5.1.6. 히스테리시스 설정

OVER 발생 후 OVER가 OFF될 때 히스테리시스를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
R.HYS	Reference Hysteresis	EUS(0.0 ~ 10.0%)	ABS	EUS(0.5%)	상시표시

5.1.7. 시간 단위 설정

■ 시간에 관련되는 파라메터의 시간단위(TIME UNIT)를 시.분(HH.MM) 또는 분.초 (MM.SS)로 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
TMU	Time Unit	HH.MM, MM.SS	ABS	HH.MM	상시표시

5.1.8. Key 잠금 설정

- 잘못된 키 입력에 의한 조절계의 이상 동작을 방지하기 위하여 키에 의한 설정을 불가능하게 하기 위한 파라메터입니다.
- LOCK이 'ON'으로 설정되면, 운전화면의 SP를 비롯한 모든 파라메터의 설정이 제한됩니다.

기호	파라메터	설정범위	단위	초기치	표시조건
LOCK	Key Lock	OFF, ON	ABS	OFF	상시표시

5.1.9. 암호 설정

- 조절계에 암호를 등록하기 위한 파라메터입니다.
- U.PWD를 설정하면 파라메터 그룹 중 제어그룹(G.CTL) 진입 전의 암호 화면에 암호를 입력해야 합니다. 이 때 설정된 암호와 입력된 값이 일치하지 않으면 이후의 파라메터 그룹에 진입할 수 없습니다.
- 공장 출하시에는 U.PWD가 '0'으로 되어 있습니다.

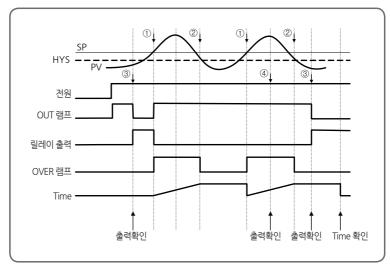
기호	파라메터	설정범위	단위	초기치	표시조건
U.PWD	User Password	0 ~ 9999	ABS	0	상시표시

- 암호를 등록했을 경우에는 잊지 않도록 주의하여 주시기 바랍니다.
- 암호를 잊어버렸을 경우에는 사용자의 조치가 불가능합니다. 이런 경우에는 당사의 서비스 부서로 제품을 보내 주시기 바랍니다.

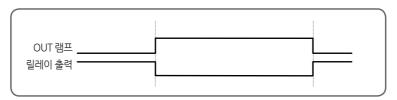
5.1.10. 초기화 실행

- 조절계를 초기화하기 위한 파라메터입니다.
- INIT를 'ON'으로 설정하면 조절계의 모든 파라메터가 초기화됩니다. (단, 통신은 초기화되지 않습니다.)

기호	파라메터	설정범위	단위	초기치	표시조건
INIT	Parameter Initialization	OFF, ON	ABS	OFF	상시표시



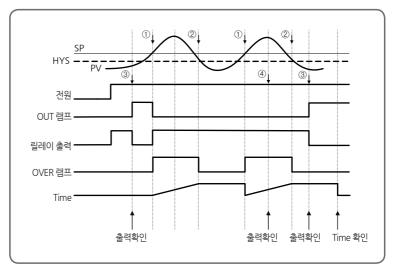
INIT 파라메터를 설정할 경우에는 조절계의 모든 파라메터가 공장출하시의 상태로 초기화됩니다. 각별히 주의하여 주시기 바랍니다.


※ HI,LO = HIGH, R,MD = OFF시, O,ACT = REV시 동작

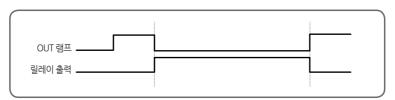
- 지시값(PV)이 설정값(SP)을 넘었을 때 OVER 램프와 OUT 램프가 ON 됩니다.(①)
- 지시값(PV)이 정상상태로 들어가면 OVER 램프는 OFF 되지만 OUT 램프는 그대로 유지합니다.(②)
- 작업자가 "RESET"KEY로 확인을 하면 (③) OUT 램프는 OFF 되고, 릴레이 출력은 ON 됩니다.
- 지시값(PV)이 설정값(SP)을 넘었을때는 확인 동작이 이루어지지 않습니다.(④)

[그림1] R.MD = OFF, O.ACT = REV시 OVER, OUT 동작

※ HI,LO = HIGH, R,MD = ON시, O,ACT = REV시 동작



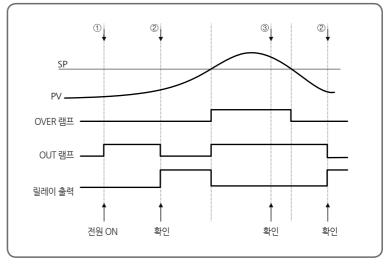
[그림2] R,MD=ON, O,ACT=REV시 OUT 동작


※ HI,LO = HIGH, R,MD = OFF시, O,ACT = FWD시 동작

- 지시값(PV)이 설정값(SP)을 넘었을 때 OVER 램프와 릴레이 출력은 ON 됩니다.(①)
- 지시값(PV)이 정상상태로 들어가면 OVER 램프는 OFF 되지만 릴레이 출력은 그대로 유지합니다.(②)
- 작업자가 "RESET"KEY로 확인을 하면 (③) OUT 램프는 OFF 되고, 릴레이 출력은 OFF 됩니다.
- 지시값(PV)이 설정값(SP)을 넘었을때는 확인 동작이 이루어지지 않습니다.(④)

[그림3] R,MD=OFF, O,ACT=FWD시 OVER, OUT 동작

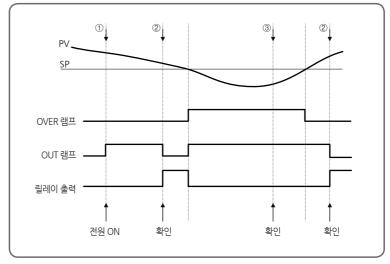
※ HI,LO = HIGH, R,MD = ON시, O,ACT = FWD시 동작



[그림4] R,MD = ON, O,ACT = FWD시 OUT 동작

※ 전원 ON시, 지시값(PV) < 설정값(SP)인 경우 동작(수동 Reset, HI,LO = HIGH일 경우)

- ① 전원 ON시
 - * OVER 램프는 OFF 상태입니다.
 - * OUT 램프는 ON 상태입니다.
 - * 릴레이 출력은 OFF 상태입니다.
- ② 확인(수동 Reset)
 - * OVER 램프 OFF시에 확인(수동 Reset)하면 릴레이 출력은 ON이 됩니다.
- ③ OVER 램프 ON시에 확인(수동 Reset)하면 릴레이 출력은 ON되지 않습니다.



[그림5] 출력 릴레이 동작 상태

※ 전원 ON시, 지시값(PV) 〉 설정값(SP)인 경우 동작(수동 Reset, HI,LO = LOW일 경우)

- ① 전원 ON시
 - * OVER 램프는 OFF 상태입니다.
 - * OUT 램프는 ON 상태입니다.
 - * 릴레이 출력은 OFF 상태입니다.
- ② 확인(수동 Reset)
 - * OVER 램프 OFF시에 확인(수동 Reset)하면 릴레이 출력은 ON됩니다.
- ③ OVER 램프 ON시에 확인(수동 Reset)하면 릴레이 출력은 ON되지 않습니다.

[그림6]출력 릴레이 동작 상태

※ 확인 동작

■ OVER 상태가 아닐때만 "RESET" KEY에 의한 릴레이 출력의 복귀동작이 가능합니다.

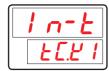
※ 시간 동작

- 지시값(PV)이 설정값(SP)을 넘었을 때 시간이 카운트되고 표시됩니다.(제3운전화면)
- 시간 표시화면에서 "RESET"KEY 및 전원 ON시에 의해 시간 카운트가 완료되고 지시값(PV)이 설정값(SP)을 넘을 때까지 "0.0"을 표시합니다.
- 지시값(PV)이 설정값(SP)을 넘었을 때에는 시간을 리셋 할 수 없습니다.
- 표시범위: 0.0 ~ 999.9 MIN

* MIN, MAX 기능

- MIN, MAX 표시화면에서 "RESET"KEY에 의해 초기화됩니다.
- 전원 ON시에 MIN/MAX값이 초기화되고. 최초의 지시값(PV)이 MIN, MAX값으로 인식됩니다.

5.2. 입력그룹(G.IN)



- 입력 관련 파라메터 그룹입니다.
 - ☞ 입력종류(IN-T): 열전대(TC), 측온저항체(RTD), 직류전압(DCV)
 - ☞ 입력 그룹이 열전대와 측온저항체일 경우에는 센서의 종류와 온도범위를 선택할 수 있습니다.
 - ☞ 입력 그룹이 직류전압일 경우에는 신호의 종류를 선택할 수 있습니다.

입력그룹의 파라메터의 설정변경은 다른 그룹에 있는 파라메터의 초기화 등에 영향을 주기 때문에 조절계 초기설정시 가장 먼저 설정하여야 합니다.

5.2.1. 입력종류 설정

- 센서입력의 종류를 설정하기 위한 파라메터입니다
- 본 조절계에서 설정할 수 있는 센서입력은 [표1] 센서입력 종류 참조하여 센서입력의 종류를 선택합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN-T	Input Sensor Type	상세는 [표1] 센서입력 종류 참조	ABS	TC.K1	상시표시

5.2.2. 입력단위 설정

- 입력단위를 "℃" 또는 "℉"중에서 선택합니다.
- IN-U를 변경하면 단위에 따라 온도범위가 자동으로 변화됩니다.
- IN-U는 센서종류(IN-T)가 TC 혹은 RTD 일 경우에만 적용 가능합니다.
- 온도단위의 설정 변경시의 표시 범위는 [표1] 센서입력 종류 참조합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN-U	Input Unit	°C/°F	ABS	°C	IN-T = TC or RTD

센서 종류 변경시 모든 파라메터가 초기화됩니다. (단, 통신은 초기화 되지 않습니다.) 각별히 주의하여 주시기 바랍니다.

[표1] 센서입력 종류

* 표시범위 : 하기범위의 -5% ~ +105%

그룹	기호	온도범위(℃)	온도범위(°F)	측정정도	
	TC.K1	-200 ~ 1370	-300 ~ 2500		
	TC.K2	-200.0 ~ 1370.0	-300 .0~ 1900.0		
	TC.J	-200.0 ~ 1200.0	-300 .0~ 1900.0	0℃이상 온도범위의 ±0.1% ±1digit 0℃미만 온도범위의 ±0.2% ±1digit	
	TC,E	-200.0 ~ 1000.0	-300.0 ~ 1800.0	0 0 12 2 3 1 1 1 2 3 2 3 2 3 3 3 3 3 3 3 3	
	TC,T	-200.0 ~ 400.0	-300 .0~ 750.0		
	TC,R	0.0 ~ 1700.0	32 ~ 3100	온도범위의 ±0.15% ±1digit	
	TC.B	0.0 ~ 1800.0	32 ~ 3300	400℃이상 온도범위의 ±0.15% ±1digit 400℃미만 온도범위의 ±5% ±1digit	
T/C	TC,S	0.0 ~ 1700.0	32 ~ 3100	온도범위의 ±0.15% ±1digit	
	TC,L	-200.0 ~ 900.0	-300 ~ 1600	0℃이상 온도범위의 ±0.1% ±1digit 0℃미만 온도범위의 ±0.2% ±1digit	
	TC,N	-200.0 ~ 1300.0	-300 ~ 2400	0℃이상 온도범위의 ±0.1% ±1digit 0℃미만 온도범위의 ±0.25% ±1digit	
	TC,U	-200.0 ~ 400.0	-300 .0~ 750.0	0℃이상 온도범위의 ±0.1% ±1digit 0℃미만 온도범위의 ±0.2% ±1digit	
	TC.W	0 ~ 2300	32 ~ 4200	온도범위의 ±0.2% ±1digit	
	TC.PL	0.0 ~ 1390.0	32 ~ 2500	온도범위의 ±0.1% ±1digit	
	TC,C	0 ~ 2320	32 ~ 4200	온도범위의 ±0.2% ±1digit	
	PTA	-200.0 ~ 850.0	-300.0 ~ 1560.0	온도범위의 ±0,1% ±1digit	
	PTB	-200.0 ~ 500.0	-300.0 ~ 1000.0	는 그 a 커 의 + 0.1 /6 + 1 tugit	
RTD	PTC	-50.00 ~ 150.00	-148.0 ~ 300.0	별도 문의	
INID	PTD	-200 ~ 850	-300 ~ 1560	온도범위의 ±0.1% ±1digit	
	JPTA	-200.0 ~ 500.0	-300.0 ~ 1000.0	온도범위의 ±0.1% ±1digit	
	JPTB	-50.00 ~ 150.00	-148.0 ~ 300.0	별도 문의	
	2V	0.400 ~ 2.000V(-	-10000 ~ 19999)		
	5V	1.000 ~ 5.000V(-	10000 ~ 19999)		
DCV	10V	0.00 ~ 10.00V(-	10000 ~ 19999)	스케일 설정범위의 ±0.1% ±1digit	
	20MV	-10.00 ~ 20.00mV	′(-10000 ~ 19999)		
	100MV	0.0 ~ 100.0mV(-	10000 ~ 19999)		

[☞] 기준동작상태[23±2℃, 55±10%RH, 전원주파수 50/60Hz]에서의 성능입니다.

^{☞ 4~20}mA DC 신호를 수신하는 경우는 DCV 5V(1~5V DC)를 선택하여, 250Ω저항을 연결합니다.

5.2.3. 입력 범위 설정

■ 센서입력 범위의 상/하한값을 설정하기 위한 파라메터입니다.

■ TC. RTD 입력

TC, RTD 입력은 센서종류를 설정하면, [표1] 센서입력 종류에 따라 입력범위가 결정됩니다.

이 때, 결정된 범위 내에서 IN.RH, IN.RL을 변경하여 입력 범위를 변경할 수 있습니다. 단, 소수점은 변경할 수 없습니다.

■ DCV. mV 입력

전압 입력도 센서종류를 설정하여 입력 범위를 결정하는 것은 동일합니다. 결정된 범위 내에서 IN.RH, IN.RL을 변경하여 입력 범위를 변경할 수 있습니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN.RH	Input Range High	입력종류의 온도범위내	EU	EU(100%)	상시표시
IN.RL	Input Range Low	[표1] 센서입력 종류 참조 단, IN.RH 〉IN.RL	EU	EU(0.0%)	상시표시

입력 범위 설정 예

■ [표1] 센서입력 종류에서 열전대 입력범위 중 -200~1370 ℃ 선택하였을 때 하한범위 설정항목에"-100", 상한범위 설정항목에 "500"을 설정하면 -100~500 ℃ 의 범위로 사용이 제한됩니다.

5.2.4. 소수점 변경 설정

■ 센서입력 종류가 mV 또는 V인 경우 측정입력의 소수점 위치를 설정하기 위한 파라메터입니다

기호	파라메터	설정범위	단위	초기치	표시조건
IN.DP	Input Dot Position	0~3	ABS	1	IN-T = DCV

이 설정에 의해 PV의 소수점위치와 관계되는 파라메터의 소수점위치도 변경됩니다. EU, EUS 관련 파라메터 모두 변경됩니다.

5.2.5. PV 표시범위 설정

■ 센서입력 종류가 mV 또는 V인 경우 측정입력에 대한 스케일(Scale)의 상한값을 설정하기 위한 파라메터입니다.

■ 센서입력 종류가 mV 또는 V인 경우 측정입력에 대한 스케일(Scale)의 하한값을 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
IN.SH	Input Scale High	-10000 ~ 19999 단, IN.SH > IN.SL	ABS	100.0	IN-T = DCV
IN.SL	Input Scale Low	소수점의 위치는 IN.DP에 의함	ADS	0.0	IN-T = DCV

PV 표시범위 설정 예

- 입력종류로 전압입력(V, mV)을 선택하고 입력이 1~5V인 경우, 0~100 을 표시하려 할 경우, IN-T: 5V를 설정합니다.
- IN.SH: 100 (5V 입력시 "100" 표시)을 설정합니다.
- IN.SL: 0 (1V 입력시 "0" 표시)을 설정합니다.

5.2.6. 입력 필터 설정

■ 외란 및 노이즈 등에 의한 PV치의 흔들림 등이 발생할 경우 이를 완화시키기 위해 PV 필터를 설정하는 파라메터입니다.

	기호	파라메터	설정범위	단위	초기치	표시조건
Г	IN.FL	Input Sensor Filter	OFF, 1~120	ABS	OFF	상시표시

5.2.7. 표시 필터 설정

■ 정상적으로 제어 중에 센서의 민감한 반응으로 PV치 흔들림이 발생할 경우 이를 완화시키기 위해 설정하는 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
D.FL	Display Filter	OFF, 1~120	ABS	OFF	상시표시

5.2.8. 센서 단선시 PV 동작 방향 설정

- 센서의 단선시(Sensor-Open) PV의 동작 방향을 선택하기 위한 파라메터입니다.
- B.SL의 설정값이 'UP'일 경우에는 PV가 센서입력 상한 방향으로, 'DOWN'일 경우에는 센서입력 하한 방향으로 동작합니다.
- B.SL의 초기치는 'UP'으로 되어 있습니다.(단, mV, V 입력시에는 'OFF'로 초기화되고 10V, 20mV, 100mV는 S.OPN 체크하지 않습니다)

기호	파라메터	설정범위	단위	초기치	표시조건
B.SL	Burn Out Select (주1)	OFF, UP, DOWN	ABS	UP (DCV=OFF)	상시표시

* (주1): S.OPN(Sensor-Open) = B.OUT(Burn-Out)

5.2.9. 기준접점보상 기능 설정

■ 센서입력의 종류가 열전대(TC)일 경우 RJC(Reference Junction Compensation, 기준접점보상)의 사용 여부를 설정하기 위한 파라메터입니다.

	기호	파라메터	설정범위	단위	초기치	표시조건
ſ	R.SL	RJC Select	OFF, ON	ABS	ON	IN-T = TC

5.2.10. 입력 전체 보정 설정

- PV 표시치의 전구간 OFFSET 조정을 합니다.
- PV 표시치 = 입력치 + 입력전체보정치(AL.BS)

기호	파라메터	설정범위	단위	초기치	표시조건
AL.BS	All Bias Value	EUS(-100.0 ~ 100.0%)	EUS	EUS(0.0%)	상시표시

5.2.11. 입력 구간 보정 설정

- PV치에 보정값(BIAS)을 설정하기 위해 보정 구간을 설정하는 파라메터입니다.
- 보정 구간은 최대 4 구간까지 설정이 가능합니다.
 - ·1구간: IN.RL(IN.SL) ↔ BS.P1
 - ·2구간: BS.P1 ↔ BS.P2
 - ·3구간: BS.P2 ↔ BS.P3
 - ·4구간: BS.P3 ↔ IN.RH(IN.SH)
- 자세한 내용은 [그림7] 구간별 입력 보정(BIAS) 설정 예와 [그림8] 입력 보정 수식 예를 참조합니다.

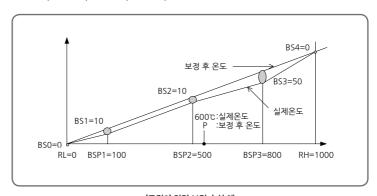
기호	파라메터	설정범위	단위	초기치	표시조건
BS.P#n	Reference Bias Point	EU(0.0 ~ 100.0%) IN,RL ≤ BS.P1 ≤ BS.P2 ≤ BS.P3 ≤ IN.RH	EU	EU(100.0%)	상시표시

 $#n = 1 \sim 3$

- 보정구간에 적용되는 PV치 보정값(BIAS)을 설정하기 위한 파라메터입니다.
- 자세한 내용은 [그림7] 구간별 입력 보정(BIAS) 설정 예와 [그림8] 입력 보정 수식 예를 참조합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
BS#n	Bias Value for BS.P Point	EUS(-100.0~100.0%)	EUS	0	상시표시

#n = 0~4


입력 구간 보정 예

[그림7] 구간별 입력 보정(BIAS) 설정 예

■ 0°C ~ 100°C에서 사용하는 제어대상체의 실제온도를 측정한 결과 25°C에서 +2°C, 50°C에서 -1°C, 75°C에서 +3°C의 편차가 발생하고 이를 보정할 경우.

RL = 0°C, BSP1=25°C, BSP2=50°C, BSP3=75°C, RH=100°C BS0 = 0°C, BS1=-2°C, BS2=+1°C, BS3=-3°C, BS4=0°C

[그림8] 입력 보정 수식 예

- 온도보정치 = 보정 후 온도 실제온도
- 보정 후 600°C에서 온도(P)

$$P = 600 + (600 - BPS2) X - \frac{BS3 - BS2}{BSP3 - BSP2} + BS2$$

PV 입력 처리

- PV가 입력 범위의 -5% 이하이거나 105% 이상일 경우에, PV 표시부에 -OVR 혹은 OVR를 표시합니다.
- 내부적으로, PV는 -5%, 105%가 되어 모든 처리가 계속됩니다.
 - PV > EU(105%): PV = 105%. PV 표시 = OVR
 - $EU(-5\%) \le PV \le EU(105\%) : PV = PV$
 - PV 〈 EU(-5%): PV = -5%, PV 표시 = -OVR
- 센서 종류 변경시 모든 파라메터가 초기화됩니다. (단, 통신은 초기화 되지 않습니다.)
- 입력 종류나 입력 범위를 변경하면 입력 범위에 관련된 파라메터들, 즉 단위가 EU 혹은 EUS 인 파라메터들이 입력 범위에 따라 변경되므로 EU 혹은 EUS 의 단위를 갖는 파라메터들 보다 앞서 센서종류를 설정하여야 합니다.

• 설정 예

- Pt100Ω 입력을 받아 -50,0~500,0℃로 사용하며 소수점 한 자리수를 표시하려고 하는 경우,
 - IN-T = PTA → PTA (-200.0~850.0℃ 범위)를 입력센서로 사용합니다.
 - IN-U = °C → 표시단위는 " °C "입니다.
- IN.RH = 500.0을 설정합니다.
- IN.RL = -50.0을 설정합니다.

5.3. 경보그룹(G,ALM)

- 경보 관련 파라메터 그룹입니다.
 - 출력방식
 - 정접 : 경보시 ON, 비경보시 OFF
 - 역접 : 경보시 OFF, 비경보시 ON
 - ☞ 대기의 조건
 - 전원(Power) On시
 - 경보종류(Alarm Type) 변경시
 - 설정값(SP) 변경시

5.3.1. 경보종류 설정

- 경보의 종류를 설정하기 위한 파라메터입니다.
- 경보의 종류는 [표2] 경보 종류를 참조합니다.

기호	파라메터	설정범위	단위	초기치	표시조건
ALT1	Alarm Type	[표2] 경보 종류 참조	ABS	AH.F	상시표시

5.3.2. 경보점 설정

■ ALT1에 의해 설정된 경보종류에 대한 경보점을 설정하기 위한 파라메터입니다. (설정값 상/하한 동작일 때 나타납니다.)

기호	파라메터	설정범위	단위	초기치	표시조건
AL-1	Alarm Set Value	EU(-100.0 ~ 100.0%)	EU	EU(100.0%)	편차알람외

5.3.3. 상/하한 경보점 설정

■ 편차상한동작 및 편차범위 내/외 동작일 경우 상한 경보점을 나타낸다.

■ 편차하한동작 및 편차범위 내/외 동작일 경우 하한 경보점을 나타낸다.

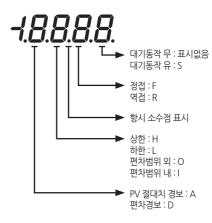
기호	파라메터	설정범위	단위	초기치	표시조건
AL#1.H	Alarm Set High Deviation	EUS(-100.0 ~ 100.0%)	EUS	EUS(0.0%)	편차알람시
AL#1.L	Alarm Set Low Deviation	EUS(-100.0 ~ 100.0%)	EUS	EUS(0.0%)	편차알람시

5.3.4. 히스테리시스 설정

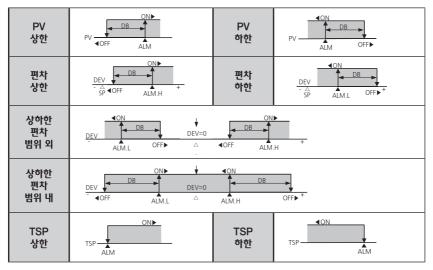
■ 경보의 히스테리시스를 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
A#1.DB	Alarm Hysteresis Value	EUS(0.0 ~ 100.0%)	EUS	EUS(0.5%)	상시표시

5.3.5. 지연시간 설정


■ 경보-1 발생시 경보 출력의 지연시간(MM.SS)을 설정하기 위한 파라메터입니다.

기호	파라메터	설정범위	단위	초기치	표시조건
A#1.DY	Alarm Delay Time	0.00 ~ 99.59 (mm.ss)	TIME	0 sec	상시표시


경보의 표시 및 종류

- 출력방식
 - 정접: 경보시 ON, 비경보시 OFF
 - 역접 : 경보시 OFF, 비경보시 ON
- 대기조건
 - 전원(Power) On시
 - 경보종류(Alarm Type) 변경시
 - 설정값(SP) 변경시

[표2] 경보 종류

шж	종류	출력방식		대기동작		т парте
번호		정접	역접	무	유	표시테이터
1	PV 상한	0		0		AH.F
2	PV 하한	0		0		AL,F
3	편차 상한	0		0		DH.F
4	편차 하한	0		0		DL,F
5	편차 상한		0	0		DH.R
6	편차 하한		0	0		DL.R
7	상하한 편차범위 외	0		0		DO.F
8	상하한 편차범위 내	0		0		DI.F
9	PV 상한		0	0		AH.R
10	PV 하한		0	0		AL.R
11	PV 상한	0			0	AH.FS
12	PV 하한	0			0	AL.FS
13	편차 상한	0			0	DH.FS
14	편차 하한	0			0	DL,FS
15	편차 상한		0		0	DH.RS
16	편차 하한		0		0	DL,RS
17	상하한 편차범위 외	0			0	DO.FS
18	상하한 편차범위 내	0			0	DI,FS
19	PV 상한		0		0	AH.RS
20	PV 하한		0		0	AL,RS
21	TSP상한	0		0		SP.H
22	TSP하한	0		0		SP.L

[그림9] 경보 동작

6. 에러시 처리

[표3] 에러시 처리

에러 표시	에러 내용	조치사항		
E.SYS	EEPROM, DATA 손실	수리의뢰		
E.RJC	기준접점보상 센서 불량	수리의뢰		
S.OPN	센서 단선	센서 체크		